Alfvenic turbulence associated with density and temperature filaments

被引:11
|
作者
Morales, GJ [1 ]
Maggs, JE [1 ]
Burke, AT [1 ]
Peñano, JR [1 ]
机构
[1] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
关键词
D O I
10.1088/0741-3335/41/3A/045
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A systematic laboratory study of controlled density and temperature filaments having transverse scale length comparable to the electron skin-depth has been performed in the large plasma device (LAPD) at UCLA. It is found that large amplitude shear Alfven waves develop spontaneously and are localized within the filaments. AS the plasma conditions change (e.g., lowering the plasma beta parameter or increasing the heating power) the highly coherent eigenmodes develop into broad band Alfvenic turbulence. A kinetic description that includes the effect of coulomb collisions has been developed to understand the linear properties of the modes. Excellent agreement with the measured eigenfunctions is found for the density filaments in the higher beta regime in which the modes remain strongly coherent. The similarity between the broad band fluctuation spectra generated in a variety of plasma configurations suggest the possibility of a universal process involving filamentary structures and spontaneously generated Alfvenic turbulence.
引用
收藏
页码:A519 / A529
页数:11
相关论文
共 50 条
  • [41] CONSTRAINING LOW-FREQUENCY ALFVENIC TURBULENCE IN THE SOLAR WIND USING DENSITY-FLUCTUATION MEASUREMENTS
    Chandran, Benjamin D. G.
    Quataert, Eliot
    Howes, Gregory G.
    Xia, Qian
    Pongkitiwanichakul, Peera
    ASTROPHYSICAL JOURNAL, 2009, 707 (02): : 1668 - 1675
  • [42] Alfvenic versus non-Alfvenic turbulence in the inner heliosphere as observed by Parker Solar Probe
    Shi, C.
    Velli, M.
    Panasenco, O.
    Tenerani, A.
    Reville, V
    Bale, S. D.
    Kasper, J.
    Korreck, K.
    Bonnell, J. W.
    de Wit, T. Dudok
    Malaspina, D. M.
    Goetz, K.
    Harvey, P. R.
    MacDowall, R. J.
    Pulupa, M.
    Case, A. W.
    Larson, D.
    Verniero, J. L.
    Livi, R.
    Stevens, M.
    Whittlesey, P.
    Maksimovic, M.
    Moncuquet, M.
    ASTRONOMY & ASTROPHYSICS, 2021, 650
  • [43] MHD-KINETIC TRANSITION IN IMBALANCED ALFVENIC TURBULENCE
    Voitenko, Yuriy
    De Keyser, Johan
    Astrophysical Journal Letters, 2016, 832 (02)
  • [44] Anisotropy of Alfvenic turbulence in the solar wind and numerical simulations
    Chen, C. H. K.
    Mallet, A.
    Yousef, T. A.
    Schekochihin, A. A.
    Horbury, T. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 415 (04) : 3219 - 3226
  • [45] ALFVENIC VERSUS STANDARD TURBULENCE IN THE SOLAR-WIND
    GRAPPIN, R
    VELLI, M
    MANGENEY, A
    ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1991, 9 (06): : 416 - 426
  • [46] MODULATIONAL INSTABILITY PRODUCED BY ALFVENIC TURBULENCE IN A COLLISIONLESS PLASMA
    HAMABATA, H
    JOURNAL OF PLASMA PHYSICS, 1991, 46 : 319 - 330
  • [47] Anisotropy of Imbalanced Alfvenic Turbulence in Fast Solar Wind
    Wicks, R. T.
    Horbury, T. S.
    Chen, C. H. K.
    Schekochihin, A. A.
    PHYSICAL REVIEW LETTERS, 2011, 106 (04)
  • [48] Disruption of Alfvenic turbulence by magnetic reconnection in a collisionless plasma
    Mallet, Alfred
    Schekochihin, Alexander A.
    Chandran, Benjamin D. G.
    JOURNAL OF PLASMA PHYSICS, 2017, 83 (06)
  • [49] Particle heating by Alfvenic turbulence in hot accretion flows
    Quataert, E
    ASTROPHYSICAL JOURNAL, 1998, 500 (02): : 978 - 991
  • [50] On nonresonant proton heating via intrinsic Alfvenic turbulence
    Wu, C. S.
    Yoon, P. H.
    Wang, C. B.
    PHYSICS OF PLASMAS, 2009, 16 (05)