Dual targeting of aminoacyl-tRNA synthetases to the apicoplast and cytosol in Plasmodium falciparum

被引:60
|
作者
Jackson, Katherine E. [1 ]
Pham, James S. [1 ]
Kwek, Michelle [1 ]
De Silva, Nilushi S. [1 ]
Allen, Stacey M. [1 ]
Goodman, Christopher D. [2 ]
McFadden, Geoffrey I. [2 ]
Ribas de Pouplana, Lluis [3 ,4 ]
Ralph, Stuart A. [1 ]
机构
[1] Univ Melbourne, Dept Biochem & Mol Biol, Mol Sci & Biotechnol Inst Bio21, Melbourne, Vic 3010, Australia
[2] Univ Melbourne, Sch Bot, Melbourne, Vic 3010, Australia
[3] Passeig Lluis Co, ICREA, Barcelona 08010, Catalonia, Spain
[4] Inst Res Biomed, Barcelona 08028, Catalonia, Spain
基金
澳大利亚研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
Plasmodium; Malaria; Apicoplast; tRNA synthetase; Aminoacyl-tRNA synthetase; Dual targeting; Borrelidin; Mupirocin; PLASTID-LIKE DNA; GENE ENCODES; MITOCHONDRIAL; BORRELIDIN; PROTEINS; DETERMINANTS; LOCALIZATION; TRANSLATION; INITIATION; DATABASE;
D O I
10.1016/j.ijpara.2011.11.008
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
The causative agent of malaria, Plasmodium, possesses three translationally active compartments: the cytosol, the mitochondrion and a relic plastid called the apicoplast. Aminoacyl-tRNA synthetases to charge tRNA are thus required for all three compartments. However, the Plasmodium falciparum genome encodes too few tRNA synthetases to supply a unique enzyme for each amino acid in all three compartments. We have investigated the subcellular localisation of three tRNA synthetases (AlaRS, GlyRS and ThrRS), which occur only once in the nuclear genome, and we show that each of these enzymes is dually localised to the P. falciparum cytosol and the apicoplast. No mitochondrial fraction is apparent for these three enzymes, which suggests that the Plasmodium mitochondrion lacks at least these three tRNA synthetases. The unique Plasmodium ThrRS is the presumed target of the antimalarial compound borrelidin. Borrelidin kills P. falciparum parasites quickly without the delayed death effect typical of apicoplast translation inhibitors and without an observable effect on apicoplast morphology. By contrast, mupirocin, an inhibitor of the apicoplast IleRS, kills with a delayed death effect that inhibits apicoplast growth and division. Because inhibition of dual targeted tRNA synthetases should arrest translation in all compartments of the parasite, these enzymes deserve further investigation as potential targets for antimalarial drug development. Crown Copyright (C) 2012 Published by Elsevier Ltd. on behalf of Australian Society for Parasitology Inc. All rights reserved.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [31] Noncanonical functions of aminoacyl-tRNA synthetases
    Smirnova, E. V.
    Lakunina, V. A.
    Tarassov, I.
    Krasheninnikov, I. A.
    Kamenski, P. A.
    BIOCHEMISTRY-MOSCOW, 2012, 77 (01) : 15 - 25
  • [32] The early history of tRNA recognition by aminoacyl-tRNA synthetases
    Giege, Richard
    JOURNAL OF BIOSCIENCES, 2006, 31 (04) : 477 - 488
  • [33] The early history of tRNA recognition by aminoacyl-tRNA synthetases
    Richard Giegé
    Journal of Biosciences, 2006, 31 : 477 - 488
  • [34] Synthetic Microcin C Analogs Targeting Different Aminoacyl-tRNA Synthetases
    Van de Vijver, Pieter
    Vondenhoff, Gaston H. M.
    Kazakov, Teymur S.
    Semenova, Ekaterina
    Kuznedelov, Konstantin
    Metlitskaya, Anastasia
    Van Aerschot, Arthur
    Severinov, Konstantin
    JOURNAL OF BACTERIOLOGY, 2009, 191 (20) : 6273 - 6280
  • [35] Editorial: Noncanonical functions of Aminoacyl-tRNA synthetases
    Sun, Litao
    Zhou, Xiao-Long
    Zhou, Zhong-Wei
    Cui, Haissi
    FRONTIERS IN PHYSIOLOGY, 2023, 14
  • [36] The Canonical and Noncanonical Functions of Aminoacyl-tRNA Synthetases
    Zhang Zhi-Ling
    Xu Wei
    Zhao Shi-Min
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2023, 50 (05) : 1133 - 1143
  • [37] Molecular evolution: Aminoacyl-tRNA synthetases on the loose
    Weiner, AM
    CURRENT BIOLOGY, 1999, 9 (22) : R842 - R844
  • [38] Continuous directed evolution of aminoacyl-tRNA synthetases
    David I Bryson
    Chenguang Fan
    Li-Tao Guo
    Corwin Miller
    Dieter Söll
    David R Liu
    Nature Chemical Biology, 2017, 13 : 1253 - 1260
  • [39] A view into the origin of life: aminoacyl-tRNA synthetases
    L. Ribas de Pouplana*
    P. Schimmel
    Cellular and Molecular Life Sciences CMLS, 2000, 57 : 865 - 870
  • [40] Aminoacyl-tRNA synthetases in human health and disease
    Turvey, Alexandra K.
    Horvath, Gabriella A.
    Cavalcanti, Andre R. O.
    FRONTIERS IN PHYSIOLOGY, 2022, 13