A TIME-SERIES ACTIVE LAYER THICKNESS RETRIEVAL ALGORITHM USING P- AND L-BAND SAR OBSERVATIONS

被引:4
|
作者
Chen, Richard H. [1 ]
Tabatabaeenejad, Alireza [1 ]
Moghaddam, Mahta [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90033 USA
关键词
Permafrost; active layer thickness; soil moisture; dual band; time series; radar remote sensing;
D O I
10.1109/IGARSS.2016.7729951
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, an active layer thickness (ALT) retrieval algorithm is presented wherein time-series of P- and L-band radar observations are used simultaneously to retrieve the depth from ground surface to permafrost table. Several model assumptions for two active layer soil conditions (maximum thaw and partially frozen) are made based on observations of in situ soil temperature and soil moisture data. It is expected that P- and L-band radar measurements can provide different aspects of active layer soil structure for retrieving accurate ALT. Monte Carlo numerical simulations are performed to show the potentials of the proposed inversion scheme and its capability of resolving subsurface features in a layered soil structure.
引用
收藏
页码:3672 / 3675
页数:4
相关论文
共 50 条
  • [31] An L-band geophysical model function for SAR wind retrieval using JERS-1 SAR
    Shimada, T
    Kawamura, H
    Shimada, M
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (03): : 518 - 531
  • [32] Use of multifrequency (C-band and L-band) SAR data to monitor peat subsidence based on time-series SBAS InSAR technique
    Umarhadi, Deha Agus
    Avtar, Ram
    Widyatmanti, Wirastuti
    Johnson, Brian Alan
    Yunus, Ali P.
    Khedher, Khaled Mohamed
    Singh, Gulab
    LAND DEGRADATION & DEVELOPMENT, 2021, 32 (16) : 4779 - 4794
  • [33] SOIL MOISTURE RETRIEVAL ONLY USING SMAP L-BAND RADAR OBSERVATIONS
    Yao, Panpan
    Lu, Hui
    Wang, Wenli
    Shao, Changkun
    Yang, Kun
    Gianotti, Daniel
    Liu, Zhuang
    Huang, Xiaomeng
    Entekhabi, Dara
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4586 - 4589
  • [34] Soil Moisture Retrieval Using Multistatic L-Band SAR and Effective Roughness Modeling
    Tronquo, Emma
    Lievens, Hans
    Bouchat, Jean
    Defourny, Pierre
    Baghdadi, Nicolas
    Verhoest, Niko E. C.
    REMOTE SENSING, 2022, 14 (07)
  • [35] First Retrieval of Sea Surface Currents Using L-Band SAR in Satellite Formation
    Pan, Bo
    Yuan, Xinzhe
    Li, Tao
    Lai, Tao
    Wang, Xiaoqing
    Xu, Chengji
    Huang, Haifeng
    REMOTE SENSING, 2025, 17 (01)
  • [36] Permafrost Dynamics Observatory (PDO): 2. Joint Retrieval of Permafrost Active Layer Thickness and Soil Moisture From L-Band InSAR and P-Band PolSAR
    Chen, Richard H.
    Michaelides, Roger J.
    Zhao, Yuhuan
    Huang, Lingcao
    Wig, Elizabeth
    Sullivan, Taylor D.
    Parsekian, Andrew D.
    Zebker, Howard A.
    Moghaddam, Mahta
    Schaefer, Kevin M.
    EARTH AND SPACE SCIENCE, 2023, 10 (01)
  • [37] Thin saline ice thickness retrieval using time-series C-band polarimetric radar measurements
    Shih, SE
    Ding, KH
    Nghiem, SV
    Hsu, CC
    Kong, JA
    Jordan, AK
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (05): : 1589 - 1598
  • [38] TEMPORAL VARIABILITY OF SOIL AND VEGETATION BACKSCATTERING OBSERVED IN DENSE L-BAND TIME-SERIES
    Lavalle, Marco
    Shiroma, Gustavo H. X.
    Rosen, Paul A.
    Hensley, Scott
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8147 - 8150
  • [39] A Two-Stage Approach for TSNB and ITWB RFI Mitigation in P- and L-Band SAR Data
    Lv, Zongsen
    Zhang, Zhimin
    Fan, Huaitao
    Chen, Zhen
    Qiu, Jinsong
    Wu, Yulun
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (02) : 1450 - 1470
  • [40] Sensitivity of P- and L-Band SAR Tomography to Above-Ground Biomass in a Hilly Temperate Forest
    Bennet, Patrik J.
    Ulander, Lars M. H.
    DAlessandro, Mauro Mariotti
    Tebaldini, Stefano
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62