A-optimal versus D-optimal design of screening experiments

被引:35
|
作者
Jones, Bradley [1 ]
Allen-Moyer, Katherine [2 ]
Goos, Peter [3 ]
机构
[1] SAS Inst Inc, JMP Div, Cary, NC USA
[2] North Carolina State Univ, Dept Stat, Raleigh, NC USA
[3] Katholieke Univ Leuven, Fac Biosci Engn, Kasteelpk Arenberg 30,Box 2456, B-3001 Leuven, Belgium
关键词
main effect; orthogonal array; prediction variance; two-factor interaction effect; two-level design; WEIGHING DESIGNS; CONSTRUCTION; FACTORIAL; BLOCKING;
D O I
10.1080/00224065.2020.1757391
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The purpose of this article is to persuade experimenters to choose A-optimal designs rather than D-optimal designs for screening experiments. The primary reason for this advice is that the A-optimality criterion is more consistent with the screening objective than the D-optimality criterion. The goal of screening experiments is to identify an active subset of the factors. An A-optimal design minimizes the average variance of the parameter estimates, which is directly related to that goal. While there are many cases where A- and D-optimal designs coincide, the A-optimal designs tend to have better statistical properties when the A- and D-optimal designs differ. In such cases, A-optimal designs generally have more uncorrelated columns in their model matrices than D-optimal designs. Also, even though A-optimal designs minimize the average variance of the parameter estimates, various cases exist where they outperform D-optimal designs in terms of the variances of all individual parameter estimates. Finally, A-optimal designs can also substantially reduce the worst prediction variance compared with D-optimal designs.
引用
收藏
页码:369 / 382
页数:14
相关论文
共 50 条
  • [31] On D-optimal robust designs for lifetime improvement experiments
    Das, Rabindra Nath
    Lin, Dennis Kj.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (12) : 3753 - 3759
  • [32] D-optimal designs for sorption kinetic experiments: Slabs
    Munson-McGee, Stuart H.
    Mannarswamy, Aravind
    Andersen, Paul K.
    [J]. JOURNAL OF FOOD ENGINEERING, 2011, 104 (03) : 461 - 466
  • [33] D-optimal designs for sorption kinetic experiments: Cylinders
    Munson-McGee, Stuart H.
    Mannarswamy, Aravind
    Andersen, Paul K.
    [J]. JOURNAL OF FOOD ENGINEERING, 2011, 104 (02) : 202 - 207
  • [34] Modified D-optimal design for logistic model
    Poursina, D.
    Talebi, H.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (02) : 428 - 437
  • [35] D-Optimal Design for Logistic Model with Maple
    Widiharih, Tatik
    Wilandari, Yuciana
    Warsito, Budi
    [J]. ADVANCED SCIENCE LETTERS, 2017, 23 (07) : 6567 - 6570
  • [36] SEQUENTIAL AND NONSEQUENTIAL D-OPTIMAL EXPERIMENTAL DESIGN
    HOHMANN, G
    JUNG, W
    [J]. BIOMETRISCHE ZEITSCHRIFT, 1975, 17 (05): : 329 - 336
  • [37] D-Optimal Design for Network A/B Testing
    Pokhilko, Victoria
    Zhang, Qiong
    Kang, Lulu
    Mays, D'arcy P.
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2019, 13 (04)
  • [38] APPLICATION OF THE RESTRICTED D-OPTIMAL DESIGN TO GRAVIMETRY
    KUBACKOVA, L
    JAKUBCOVA, I
    PICK, M
    HRACH, S
    [J]. STUDIA GEOPHYSICA ET GEODAETICA, 1979, 23 (01) : 10 - 16
  • [39] A D-OPTIMAL DESIGN OF ORDER-102
    COHN, JHE
    [J]. DISCRETE MATHEMATICS, 1992, 102 (01) : 61 - 65
  • [40] D-Optimal Design for Network A/B Testing
    Victoria Pokhilko
    Qiong Zhang
    Lulu Kang
    D’arcy P. Mays
    [J]. Journal of Statistical Theory and Practice, 2019, 13