Using machine learning to reveal the population vector from EEG signals

被引:13
|
作者
Kobler, Reinmar J. [1 ]
Almeida, Ines [1 ,2 ]
Sburlea, Andreea, I [1 ]
Mueller-Putz, Gernot R. [1 ]
机构
[1] Graz Univ Technol, Inst Neural Engn, A-8010 Graz, Styria, Austria
[2] Univ Lisbon, Fac Sci, P-1749016 Lisbon, Lisbon District, Portugal
基金
欧洲研究理事会;
关键词
electroencephalography; arm movement; machine learning; population vector; movement direction; continuous movement; source imaging; BRAIN-COMPUTER INTERFACES; ARM MOVEMENTS; HAND MOVEMENTS; MOTOR; DIRECTION; ELECTROENCEPHALOGRAM; OSCILLATIONS; CORTEX; TRAJECTORIES; RESTORATION;
D O I
10.1088/1741-2552/ab7490
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Since the discovery of the population vector that directly relates neural spiking activity with arm movement direction, it has become feasible to control robotic arms and neuroprostheses using invasively recorded brain signals. For non-invasive approaches, a direct relation between human brain signals and arm movement direction is yet to be established. Approach. Here, we investigated electroencephalographic (EEG) signals in temporal and spectral domains in a continuous, circular arm movement task. Using machine learning methods that respect the linear mixture of brain activity within EEG signals, we show that directional information is represented in the temporal domain in amplitude modulations of the same frequency as the arm movement, and in the spectral domain in power modulations of the 20-24 Hz frequency band. Main results. In the temporal domain, the directional information was mainly expressed in primary sensorimotor cortex (SM1) and posterior parietal cortex (PPC) contralateral to the moving arm, while in the spectral domain SM1 and PPC of both hemispheres predicted arm movement direction. The different cortical representations suggest distinct neural representations in both domains. Significance. This direct relation between neural activity and arm movement direction in both domains demonstrates the potential of machine learning to reveal neuroscientific insights about the dynamics of human arm movements.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Classification of EEG Signals Using Fractional Calculus and Wavelet Support Vector Machine
    Aaruni, V. C.
    Harsha, A.
    Joseph, Liza Annie
    2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, INFORMATICS, COMMUNICATION AND ENERGY SYSTEMS (SPICES), 2015,
  • [22] A Machine Learning Framework for Automatic Diagnosis of Schizophrenia Using EEG Signals
    Ranjan, Rakesh
    Sahana, Bikash Chandra
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [23] Classification of EEG signals to detect alcoholism using machine learning techniques
    Rodrigues, Jardel das C.
    Reboucas Filho, Pedro R.
    Peixoto Jr, Eugenio
    Kumar, Arun N.
    de Albuquerque, Victor Hugo C.
    PATTERN RECOGNITION LETTERS, 2019, 125 : 140 - 149
  • [24] Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review
    Rasheed, Khansa
    Qayyum, Adnan
    Qadir, Junaid
    Sivathamboo, Shobi
    Kwan, Patrick
    Kuhlmann, Levin
    O'Brien, Terence
    Razi, Adeel
    IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2021, 14 : 139 - 155
  • [25] Discrimination of Depression Levels Using Machine Learning Methods on EEG Signals
    Mohammadi, Yousef
    Hajian, Mojtaba
    Moradi, Mohammad Hassan
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1765 - 1769
  • [26] An Interpretable Machine Learning Method for the Detection of Schizophrenia Using EEG Signals
    Vazquez, Manuel A.
    Maghsoudi, Arash
    Marino, Ines P.
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2021, 15
  • [27] A machine learning approach using EEG signals to measure sleep quality
    Ravan M.
    AIMS Electronics and Electrical Engineering, 2019, 3 (04): : 347 - 358
  • [28] EEG Signals Classification Using Machine Learning for The Identification and Diagnosis of Schizophrenia
    Zhang, Lei
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 4521 - 4524
  • [29] Cognitive Workload Recognition Using EEG Signals and Machine Learning: A Review
    Zhou, Yueying
    Huang, Shuo
    Xu, Ziming
    Wang, Pengpai
    Wu, Xia
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (03) : 799 - 818
  • [30] Classification of Epileptic EEG Signals Using Synchrosqueezing Transform and Machine Learning
    Cura, Ozlem Karabiber
    Akan, Aydin
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (05)