Edge detection of noisy images based on cellular neural networks

被引:87
|
作者
Li, Huaqing [1 ]
Liao, Xiaofeng [1 ]
Li, Chuandong [1 ]
Huang, Hongyu [1 ]
Li, Chaojie [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, State Key Lab Power Transmiss Equipment Syst Secu, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellular neural network (CNN); Templates; Image edge detection; Noise reduction; ASSOCIATIVE MEMORIES; TEMPLATE DESIGN; CNN GENES;
D O I
10.1016/j.cnsns.2010.12.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a technique employing both cellular neural networks (CNNs) and linear matrix inequality (LMI) for edge detection of noisy images. Our main work focuses on training templates of noise reduction and edge detection CNNs. Based on the Lyapunov stability theorem, we derive a criterion for global asymptotical stability of a unique equilibrium of the noise reduction CNN. Then we design an approach to train edge detection templates, and this approach can detect the edge precisely and efficiently, i.e., by only one iteration. Finally, we illustrate performance of the proposed methodology from the aspect of peak signal to noise ratio (PSNR) through computer simulations. Moreover, some comparisons are also given to prove that our method outperforms classical operators in gray image edge detection. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3746 / 3759
页数:14
相关论文
共 50 条
  • [1] A Method for Edge Detection in Gray Level Images, based on Cellular Neural Networks
    Medina Hernandez, Jose Antonio
    Gomez Castaneda, Felipe
    Moreno Cadenas, Jose Antonio
    [J]. 2009 52ND IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2009, : 730 - 733
  • [2] Cellular neural networks for edge detection
    Grassi, Giuseppe
    Vecchio, Pietro
    Di Sciascio, Eugenio
    Grieco, Luigi A.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (04): : 1323 - 1328
  • [3] Edge detection from noisy images using a neural edge detector
    Suzuki, K
    Horiba, I
    Sugie, N
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 487 - 496
  • [4] IMPROVING EDGE MEASUREMENT ON NOISY IMAGES BY HIERARCHICAL NEURAL NETWORKS
    LU, S
    SZETO, A
    [J]. PATTERN RECOGNITION LETTERS, 1991, 12 (03) : 155 - 164
  • [5] Edge Detection Method Based on Neural Networks for COMS MI Images
    Lee, Jin-Ho
    Park, Eun-Bin
    Woo, Sun-Hee
    [J]. JOURNAL OF ASTRONOMY AND SPACE SCIENCE, 2016, 33 (04): : 313 - 318
  • [6] Robust edge detection in noisy images
    Lim, DH
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (03) : 803 - 812
  • [7] Neural network based detection of heterogeneities in noisy images
    Abramov, S.
    Naumenko, A.
    Lukin, V.
    Krivenko, S.
    Kaluzhinov, I.
    [J]. Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 2020, 79 (19): : 1691 - 1705
  • [8] EDGE-DETECTION IN NOISY IMAGES BASED ON THE COOCCURRENCE MATRIX
    PARK, DJ
    NAM, KM
    PARK, RH
    [J]. PATTERN RECOGNITION, 1994, 27 (06) : 765 - 775
  • [9] A cellular Automata approach for noisy images edge detection under null boundary conditions
    Aghaei, Atefe
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2018), 2018, : 771 - 777
  • [10] A combinatorial edge detection algorithm on noisy images
    Rital, S
    Bretto, A
    Cherifi, H
    Aboutajdine, D
    [J]. PROCEEDINGS VIPROMCOM-2002, 2002, : 351 - 355