Robust edge detection in noisy images

被引:45
|
作者
Lim, DH [1 ]
机构
[1] Gyeongsang Natl Univ, Dept Informat Stat, Informat & Telecomm Res Ctr, Jinju 660701, South Korea
[2] Gyeongsang Natl Univ, Res Inst Nat Sci, Informat & Telecomm Res Ctr, Jinju 660701, South Korea
基金
新加坡国家研究基金会;
关键词
robust edge detection; robust rank-order detector; Wilcoxon detector; T detector; Canny detector; Pratt's figure of merit;
D O I
10.1016/j.csda.2004.10.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe a new edge detector based on the robust rank-order (RRO) test which is a useful alternative to Wilcoxon test, using r x r window for detecting edges of all possible orientations in noisy images. Our method is based on testing whether a r x r window is spatially partitioned into two subregions having significant differences in local gray-level value between adjacent pixel neighborhoods of a given pixel, using an edge-height model to extract edges of some sufficient height from images corrupted with noises. Some experiments of statistical edge detectors based on the Wilcoxon test and T-test, and the well-known Canny edge detector with our RRO detector are carried out on synthetic and real images corrupted by both Gaussian and impulse noise. The results show that the performance of the proposed edge detector appears to be the most robust to variations in noise, performing well in all noise distributions tested. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:803 / 812
页数:10
相关论文
共 50 条
  • [1] Robust edge detection by independent component analysis in noisy images
    Han, XH
    Chen, YW
    Nakao, Z
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (09): : 2204 - 2211
  • [2] Robust Multi-Scale Edge Detection for Noisy Images
    Wang, Yongsheng
    Sang, Nong
    [J]. MIPPR 2013: MULTISPECTRAL IMAGE ACQUISITION, PROCESSING, AND ANALYSIS, 2013, 8917
  • [3] Robust rank-order test for edge detection in noisy images
    Lim, Dong Hoon
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2006, 18 (03) : 333 - 342
  • [4] An improved teaching-learning based robust edge detection algorithm for noisy images
    Thirumavalavan, Sasirooba
    Jayaraman, Sasikala
    [J]. JOURNAL OF ADVANCED RESEARCH, 2016, 7 (06) : 979 - 989
  • [6] A combinatorial edge detection algorithm on noisy images
    Rital, S
    Bretto, A
    Cherifi, H
    Aboutajdine, D
    [J]. PROCEEDINGS VIPROMCOM-2002, 2002, : 351 - 355
  • [7] A Bayesian approach to edge detection in noisy images
    De Santis, A
    Sinisgalli, C
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (06): : 686 - 699
  • [8] A Statistical Edge Detection Framework for Noisy Images
    Duman, Elvan
    Erdem, O. Ayhan
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [9] Robust nonparametric detection of objects in noisy images
    Langovoy, Mikhail
    Wittich, Olaf
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (02) : 409 - 426
  • [10] Edge detection in noisy images using fuzzy reasoning
    Russo, F
    [J]. WHERE INSTRUMENTATION IS GOING - CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 369 - 372