HEURISTIC FEATURE SELECTION FOR SHAVING TOOL WEAR CLASSIFICATION

被引:0
|
作者
Wang, Yong [1 ]
Brzezinski, Adam J. [2 ]
Qiao, Xianli [3 ]
Ni, Jun [3 ]
机构
[1] SUNY Binghamton, Dept Syst Sci & Ind Engn, 4400 Vestal Pkwy E, Binghamton, NY 13902 USA
[2] HGST Inc, Western Digital, 3403 Yerba Buena Rd, San Jose, CA 95135 USA
[3] Univ Michigan, Dept Mech Engn, 1255 HH Dow,2350 Hayward St, Ann Arbor, MI 48109 USA
关键词
Shaving process; condition monitoring; feature selection; tabu search; probabilistic neural network; CUTTER;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we develop and apply feature extraction and selection techniques to classify tool wear in the shaving process. Because shaving tool condition monitoring is not well-studied, we extract both traditional and novel features from accelerometer signals collected from the shaving machine. We then apply a heuristic feature selection technique to identify key features and classify the tool condition. Run-to-life data from a shop-floor application is used to validate the proposed technique.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A Study on Meta Heuristic Algorithms for Feature Selection
    Moorthy, Rajalakshmi Shenbaga
    Pabitha, P.
    INTERNATIONAL CONFERENCE ON INTELLIGENT DATA COMMUNICATION TECHNOLOGIES AND INTERNET OF THINGS, ICICI 2018, 2019, 26 : 1291 - 1298
  • [32] HHFS: Hyper-heuristic feature selection
    Montazeri, Mitra
    INTELLIGENT DATA ANALYSIS, 2016, 20 (04) : 953 - 974
  • [33] Heuristic search over a ranking for feature selection
    Ruiz, R
    Riquelme, JC
    Aguilar-Ruiz, JS
    COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 742 - 749
  • [34] FEATURE-BASED TOOL CONDITION MONITORING IN A GEAR SHAVING APPLICATION
    Brzezinski, A. J.
    Wang, Y.
    Choi, D. K.
    Qiao, X.
    Ni, J.
    MSEC 2008: PROCEEDINGS OF THE ASME INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE 2008, VOL 2, 2009, : 65 - 74
  • [35] Feature weighting as a tool for unsupervised feature selection
    Panday, Deepak
    de Amorim, Renato Cordeiro
    Lane, Peter
    INFORMATION PROCESSING LETTERS, 2018, 129 : 44 - 52
  • [36] Feature Selection for Classification with QAOA
    Turati, Gloria
    Dacrema, Maurizio Ferrari
    Cremonesi, Paolo
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 782 - 785
  • [37] Feature Selection for Collective Classification
    Senliol, Baris
    Aral, Atakan
    Cataltepe, Zehra
    2009 24TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2009, : 285 - 290
  • [38] ONLINE FEATURE SELECTION AND CLASSIFICATION
    Kalkan, Habil
    Cetisli, Bayram
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2124 - 2127
  • [39] Feature Selection for Twitter Classification
    Ostrowski, David Alfred
    2014 IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2014, : 267 - 272
  • [40] Feature Selection for Monotonic Classification
    Hu, Qinghua
    Pan, Weiwei
    Zhang, Lei
    Zhang, David
    Song, Yanping
    Guo, Maozu
    Yu, Daren
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (01) : 69 - 81