Flame detection based on Spatio-Temporal Covariance matrix

被引:0
|
作者
Gu, Changjun [1 ,2 ]
Tian, Dongying [2 ]
Cong, Yang [2 ]
Zhang, Yanzhu [1 ]
Wang, Shuai [2 ]
机构
[1] Shenyang Li Gong Univ, Automat & Elect Engn Dept, Shenyang, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang, Peoples R China
关键词
fire detection; background subtraction; region covariance; support vector machines; FIRE DETECTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic fire flame detection is important for intelligent video surveillance. The background model and various color features are usually adopted for flame detection. In this paper, a fire flame detection method is developed by combining both background subtraction and region covariance. The color distribution method and background model with an adaptive background learning model are used to preprocess the image firstly. We then extract the space-temporal covariance matrix, which is used to fuse all the discriminative cues together. Finally we use support vector machine to classify fire scene. The proposed system is effective in detecting uncontrolled fire in complicated environment. Experiments based on several public fire video data sets are utilized to justify the effectiveness of our method.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 50 条
  • [31] LANDSLIDE CHANGE DETECTION BASED ON SPATIO-TEMPORAL CONTEXT
    Huang Qingqing
    Meng Yu
    Chen Jingbo
    Yue Anzhi
    Lin Lei
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1095 - 1098
  • [32] Video saliency detection by spatio-temporal sampling and sparse matrix decomposition
    Pan, Yunfeng
    Jiang, Qiuping
    Li, Zhutuan
    Shao, Feng
    [J]. WSEAS Transactions on Computers, 2014, 13 : 520 - 527
  • [33] LBP based Spatio-Temporal Covariance Descriptor for People Re-identification
    Hadjkacem, Bassem
    Ayedi, Walid
    Abid, Mohamed
    Snoussi, Hichem
    [J]. JOURNAL OF INFORMATION ASSURANCE AND SECURITY, 2016, 11 (03): : 126 - 134
  • [34] Spatio-temporal reasoning based spatio-temporal information management middleware
    Wang, SS
    Liu, DY
    Wang, Z
    [J]. ADVANCED WEB TECHNOLOGIES AND APPLICATIONS, 2004, 3007 : 436 - 441
  • [35] Spatio-temporal Matrix Factorization Based Air Quality Inference
    Hu, Keyong
    Guo, Xiaolan
    Liu, Guoxiao
    Yang, Xin
    Wang, Xupeng
    [J]. Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2024, 56 (05): : 146 - 155
  • [36] Spatio-Temporal Flame Modeling and Dynamic Texture Analysis for Automatic Video-Based Fire Detection
    Dimitropoulos, Kosmas
    Barmpoutis, Panagiotis
    Grammalidis, Nikos
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2015, 25 (02) : 339 - 351
  • [37] ON SOME MATERN COVARIANCE FUNCTIONS FOR SPATIO-TEMPORAL RANDOM FIELDS
    Ip, Ryan H. L.
    Li, W. K.
    [J]. STATISTICA SINICA, 2017, 27 (02) : 805 - 822
  • [38] A spatio-temporal covariance descriptor for person re-identification
    Hadjkacem, Bassem
    Ayedi, Walid
    Abid, Mohamed
    Snoussi, Hichem
    [J]. 2015 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2015, : 618 - 622
  • [39] Spatio-temporal conflict detection and resolution
    Howarth, Richard J.
    Tsang, Edward P. K.
    [J]. Constraints, 1998, 3 (04) : 343 - 361
  • [40] Robust Kronecker Product PCA for Spatio-Temporal Covariance Estimation
    Greenewald, Kristjan
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (23) : 6368 - 6378