Direct observation of zero modes in a non-Hermitian optical nanocavity array

被引:11
|
作者
Hentinger, Flore [1 ]
Hedir, Melissa [1 ]
Garbin, Bruno [1 ]
Marconi, Mathias [2 ]
Ge, Li [3 ,4 ]
Raineri, Fabrice [1 ,5 ]
Levenson, Juan A. [1 ]
Yacomotti, Alejandro M. [1 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, Ctr Nanosci & Nanotechnol, CNRS, F-91120 Palaiseau, France
[2] Univ Cote dAzur, Inst Phys Nice, CNRS, UMR 7010, Sophia Antipolis, France
[3] CUNY, Dept Phys & Astron, Coll Staten Isl, Staten Isl, NY 10314 USA
[4] CUNY, Grad Ctr, New York, NY 10016 USA
[5] Univ Paris, F-75205 Paris 13, France
基金
美国国家科学基金会;
关键词
Eigenvalues and eigenfunctions;
D O I
10.1364/PRJ.440050
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Zero modes are symmetry protected ones whose energy eigenvalues have zero real parts. In Hermitian arrays, they arise as a consequence of the sublattice symmetry, implying that they are dark modes. In non-Hermitian systems that naturally emerge in gain/loss optical cavities, particle-hole symmetry prevails instead; the resulting zero modes are no longer dark but feature pi/2 phase jumps between adjacent cavities. Here, we report on the direct observation of zero modes in a non-Hermitian three coupled photonic crystal nanocavities array containing quantum wells. Unlike the Hermitian counterparts, the observation of non-Hermitian zero modes upon single pump spot illumination requires vanishing sublattice detuning, and they can be identified through far-field imaging and spectral filtering of the photoluminescence at selected pump locations. We explain the zero-mode coalescence as a parity-time phase transition for small coupling. These zero modes are robust against coupling disorder and can be used for laser mode engineering and photonic computing. (C) 2022 Chinese Laser Press
引用
收藏
页码:574 / 586
页数:13
相关论文
共 50 条
  • [21] Zero Energy Modes with Gaussian, Exponential, or Polynomial Decay: Exact Solutions in Hermitian and non-Hermitian Regimes
    Marra, Pasquale
    Nigro, Angela
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2025, 2025 (03):
  • [22] Non-Hermitian coupling of orbital angular momentum modes in optical waveguides
    Wang, Chensheng
    Zhang, Zhijie
    Wang, Zhenhua
    Xiong, Wei
    Deng, Leimin
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (04) : 682 - 687
  • [23] Probing non-Hermitian zero modes in a nanophotonic trimer: From nonuniform to twisted coupling
    Hedir, Melissa
    Ji, Kaiwen
    Levenson, Juan Ariel
    El-Ganainy, Ramy
    Ge, Li
    Yacomotti, Alejandro M.
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [24] Extending edge modes with non-Hermitian forcing
    Sheinfux, Hanan Herzig
    Lustig, Eran
    Lumer, Yaakov
    Pltonik, Yonatan
    Segev, Mordechai
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [25] Interfacial skin modes at a non-Hermitian heterojunction
    Rafi-Ul-Islam, S. M.
    Sahin, Haydar
    Bin Siu, Zhuo
    Jalil, Mansoor B. A.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [26] Observation of topological rainbow in non-Hermitian systems
    Lu, Cuicui
    Zhao, Wen
    Zhang, Sheng
    Zheng, Yanji
    Wang, Chenyang
    Li, Yaohua
    Liu, Yong-Chun
    Hu, Xiaoyong
    Hang, Zhi Hong
    CHINESE OPTICS LETTERS, 2023, 21 (12)
  • [27] Observation of dynamic non-Hermitian skin effects
    Li, Zhen
    Wang, Li-Wei
    Wang, Xulong
    Lin, Zhi-Kang
    Ma, Guancong
    Jiang, Jian-Hua
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [28] Observation of topological rainbow in non-Hermitian systems
    路翠翠
    赵闻
    张胜
    郑焱基
    王晨阳
    李耀华
    刘永椿
    胡小永
    杭志宏
    Chinese Optics Letters, 2023, 21 (12) : 101 - 106
  • [29] Non-Hermitian physics of levitated nanoparticle array
    Yokomizo, Kazuki
    Ashida, Yuto
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [30] Far-Field Correlations Verifying Non-Hermitian Degeneracy of Optical Modes
    Gwak, Sunjae
    Ryu, Jinhyeok
    Kim, Hyundong
    Yu, Hyeon-Hye
    Kim, Chil-Min
    Yi, Chang-Hwan
    PHYSICAL REVIEW LETTERS, 2022, 129 (07)