Direct observation of zero modes in a non-Hermitian optical nanocavity array

被引:11
|
作者
Hentinger, Flore [1 ]
Hedir, Melissa [1 ]
Garbin, Bruno [1 ]
Marconi, Mathias [2 ]
Ge, Li [3 ,4 ]
Raineri, Fabrice [1 ,5 ]
Levenson, Juan A. [1 ]
Yacomotti, Alejandro M. [1 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, Ctr Nanosci & Nanotechnol, CNRS, F-91120 Palaiseau, France
[2] Univ Cote dAzur, Inst Phys Nice, CNRS, UMR 7010, Sophia Antipolis, France
[3] CUNY, Dept Phys & Astron, Coll Staten Isl, Staten Isl, NY 10314 USA
[4] CUNY, Grad Ctr, New York, NY 10016 USA
[5] Univ Paris, F-75205 Paris 13, France
基金
美国国家科学基金会;
关键词
Eigenvalues and eigenfunctions;
D O I
10.1364/PRJ.440050
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Zero modes are symmetry protected ones whose energy eigenvalues have zero real parts. In Hermitian arrays, they arise as a consequence of the sublattice symmetry, implying that they are dark modes. In non-Hermitian systems that naturally emerge in gain/loss optical cavities, particle-hole symmetry prevails instead; the resulting zero modes are no longer dark but feature pi/2 phase jumps between adjacent cavities. Here, we report on the direct observation of zero modes in a non-Hermitian three coupled photonic crystal nanocavities array containing quantum wells. Unlike the Hermitian counterparts, the observation of non-Hermitian zero modes upon single pump spot illumination requires vanishing sublattice detuning, and they can be identified through far-field imaging and spectral filtering of the photoluminescence at selected pump locations. We explain the zero-mode coalescence as a parity-time phase transition for small coupling. These zero modes are robust against coupling disorder and can be used for laser mode engineering and photonic computing. (C) 2022 Chinese Laser Press
引用
收藏
页码:574 / 586
页数:13
相关论文
共 50 条
  • [1] Direct observation of zero modes in a non-Hermitian optical nanocavity array
    FLORE HENTINGER
    MELISSA HEDIR
    BRUNO GARBIN
    MATHIAS MARCONI
    LI GE
    FABRICE RAINERI
    JUAN A.LEVENSON
    ALEJANDRO M.YACOMOTTI
    Photonics Research, 2022, (02) : 574 - 586
  • [2] Breakup and Recovery of Topological Zero Modes in Finite Non-Hermitian Optical Lattices
    Song, Wange
    Sun, Wenzhao
    Chen, Chen
    Song, Qinghai
    Xiao, Shumin
    Zhu, Shining
    Li, Tao
    PHYSICAL REVIEW LETTERS, 2019, 123 (16)
  • [3] Guided modes in non-Hermitian optical waveguides
    Turitsyna, Elena G.
    Shadrivov, Ilya V.
    Kivshar, Yuri S.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [4] Universal distributions from non-Hermitian perturbation of zero modes
    Kieburg, M.
    Mielke, A.
    Rud, M.
    Splittorff, K.
    PHYSICAL REVIEW E, 2020, 101 (03)
  • [5] Hidden Zero Modes and Topology of Multiband Non-Hermitian Systems
    Monkman, Kyle
    Sirker, Jesko
    PHYSICAL REVIEW LETTERS, 2025, 134 (05)
  • [6] Defective Majorana zero modes in a non-Hermitian Kitaev chain
    Zhao, Xiao-Ming
    Guo, Cui-Xian
    Kou, Su-Peng
    Zhuang, Lin
    Liu, Wu-Ming
    PHYSICAL REVIEW B, 2021, 104 (20)
  • [7] Observation of continuum Landau modes in non-Hermitian electric circuits
    Zhang, Xuewei
    Wu, Chaohua
    Yan, Mou
    Liu, Ni
    Wang, Ziyu
    Chen, Gang
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [8] Robust Zero Modes in Non-Hermitian Systems without Global Symmetries
    Rivero, Jose D. H.
    Fleming, Courtney
    Qi, Bingkun
    Feng, Liang
    Ge, Li
    PHYSICAL REVIEW LETTERS, 2023, 131 (22)
  • [9] Linear Localization of Zero Modes in Weakly Coupled Non-Hermitian Reservoirs
    Qi, Bingkun
    Ge, Li
    ADVANCED PHYSICS RESEARCH, 2023, 2 (12):
  • [10] Non-Hermitian Skin Effect in Non-Hermitian Optical Systems
    Zhang, Yingqiu
    Wei, Zhongchao
    LASER & PHOTONICS REVIEWS, 2025, 19 (01)