An adaptive finite element method for singular parabolic equations

被引:0
|
作者
Wilderotter, O [1 ]
机构
[1] Univ Bonn, Sonderforsch Bereich 256, D-53115 Bonn, Germany
关键词
D O I
10.1007/s00211-003-0463-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the adaptive finite element method to solve singular parabolic equations of porous media type and of nonstationary infiltration. We first prove a posteriori error estimates that especially take into account the discretization and algebraic errors. Furthermore we propose a robust adaptive method and apply this method to saturated/unsaturated porous media flow in an aquifer coupled with a root extraction process.
引用
下载
收藏
页码:377 / 399
页数:23
相关论文
共 50 条
  • [41] An adaptive finite element method for parabolic interface problems with nonzero flux jumps
    Ray, Tanushree
    Sinha, Rajen Kumar
    Computers and Mathematics with Applications, 2021, 82 : 97 - 112
  • [42] An adaptive finite element method for parabolic interface problems with nonzero flux jumps
    Ray, Tanushree
    Sinha, Rajen Kumar
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 82 : 97 - 112
  • [43] ADAPTIVE HYBRID FINITE ELEMENT/DIFFERENCE METHOD FOR MAXWELL'S EQUATIONS
    Beilina, Larisa
    Grote, Marcus J.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 1 (02): : 176 - 197
  • [44] AN ADAPTIVE EDGE FINITE ELEMENT METHOD FOR THE MAXWELL'S EQUATIONS IN METAMATERIALS
    Wang, Hao
    Yang, Wei
    Huang, Yunqing
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 961 - 976
  • [45] On the existence of maximum principles in parabolic finite element equations
    Thomee, Vidar
    Wahlbin, Lars B.
    MATHEMATICS OF COMPUTATION, 2008, 77 (261) : 11 - 19
  • [46] FINITE-ELEMENT METHODS FOR NONLINEAR PARABOLIC EQUATIONS
    ZLAMAL, M
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1977, 11 (01): : 93 - 107
  • [47] Weak Galerkin Finite Element Methods for Parabolic Equations
    Li, Qiaoluan H.
    Wang, Junping
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (06) : 2004 - 2024
  • [49] LOCALLY CONSERVATIVE FINITE ELEMENT SOLUTIONS FOR PARABOLIC EQUATIONS
    Gong, Wenbo
    Zou, Qingsong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (05) : 679 - 694
  • [50] Parabolic finite element equations in nonconvex polygonal domains
    P. Chatzipantelidis
    R. D. Lazarov
    V. Thomée
    L. B. Wahlbin
    BIT Numerical Mathematics, 2006, 46 : 113 - 143