An adaptive finite element method for singular parabolic equations

被引:0
|
作者
Wilderotter, O [1 ]
机构
[1] Univ Bonn, Sonderforsch Bereich 256, D-53115 Bonn, Germany
关键词
D O I
10.1007/s00211-003-0463-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the adaptive finite element method to solve singular parabolic equations of porous media type and of nonstationary infiltration. We first prove a posteriori error estimates that especially take into account the discretization and algebraic errors. Furthermore we propose a robust adaptive method and apply this method to saturated/unsaturated porous media flow in an aquifer coupled with a root extraction process.
引用
收藏
页码:377 / 399
页数:23
相关论文
共 50 条
  • [1] An adaptive finite element method for singular parabolic equations
    Olga Wilderotter
    [J]. Numerische Mathematik, 2003, 96 : 377 - 399
  • [2] Adaptive finite element method for parabolic equations with Dirac measure
    Gong, Wei
    Liu, Huipo
    Yan, Ningning
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 328 : 217 - 241
  • [3] A finite element method for parabolic equations
    Dahlgren, M
    [J]. PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2002, 2004, 5 : 253 - 258
  • [4] Nonconforming Finite Element Method for Nonlinear Parabolic Equations
    Yin, Hongwu
    Zhang, Buying
    [J]. INFORMATION COMPUTING AND APPLICATIONS, PT 2, 2010, 106 : 491 - +
  • [5] NONCONFORMING FINITE ELEMENT METHOD FOR NONLINEAR PARABOLIC EQUATIONS
    Dongyang SHI Department of Mathematics
    [J]. Journal of Systems Science & Complexity, 2010, 23 (02) : 395 - 402
  • [6] Nonconforming finite element method for nonlinear parabolic equations
    Shi, Dongyang
    Zhang, Buying
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2010, 23 (02) : 395 - 402
  • [7] Nonconforming finite element method for nonlinear parabolic equations
    Dongyang Shi
    Buying Zhang
    [J]. Journal of Systems Science and Complexity, 2010, 23 : 395 - 402
  • [8] A wavelet-in-time, finite element-in-space adaptive method for parabolic evolution equations
    Stevenson, Rob
    van Venetie, Raymond
    Westerdiep, Jan
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (03)
  • [9] A wavelet-in-time, finite element-in-space adaptive method for parabolic evolution equations
    Rob Stevenson
    Raymond van Venetië
    Jan Westerdiep
    [J]. Advances in Computational Mathematics, 2022, 48
  • [10] Discrete maximal regularity and the finite element method for parabolic equations
    Kemmochi, Tomoya
    Saito, Norikazu
    [J]. NUMERISCHE MATHEMATIK, 2018, 138 (04) : 905 - 937