LOCAL BINARY PATTERN WITH RANDOM FOREST FOR ACOUSTIC SCENE CLASSIFICATION

被引:0
|
作者
Abidin, Shamsiah [1 ]
Xia, Xianjun [1 ]
Togneri, Roberto [1 ]
Sohel, Ferdous [2 ]
机构
[1] Univ Western Australia, Sch Elect Elect & Comp Engn, Perth, WA, Australia
[2] Murdoch Univ, Sch Engn & Informat Technol, Perth, WA, Australia
关键词
acoustic scene; local binary patterns; feature extraction; time-frequency analysis; fusion; random forest;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents an approach for acoustic scene classification using the local binary pattern (LBP) and random forest (RF). The audio signal is converted to a Constant-Q transform (CQT) representation and LBP is used to extract the features from this time-frequency representation. The CQT representations are divided into a number of sub-bands to obtain more localized features relevant to the spectral information. We then use random forest to select the most important features for each band of extracted LBP features. For further performance enhancement, we use feature level fusion of LBP and HOG features. The proposed system has achieved an accuracy of 85% on the DCASE 2016 dataset.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A New Game Theoretic Based Random Forest for Binary Classification
    Suciu, Mihai-Alexandru
    Lung, Rodica Ioana
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2022, 2022, 13469 : 123 - 132
  • [32] ACOUSTIC CONTEXT RECOGNITION USING LOCAL BINARY PATTERN CODEBOOKS
    Battaglino, Daniele
    Lepauloux, Ludovick
    Pilati, Laurent
    Evans, Nicholas
    [J]. 2015 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2015,
  • [33] ACOUSTIC SCENE CLASSIFICATION USING DISCRETE RANDOM HASHING FOR LAPLACIAN KERNEL MACHINES
    Jimenez, Abelino
    Elizalde, Benjamin
    Raj, Bhiksha
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 146 - 150
  • [34] Binary Malware image Classification using Machine Learning with Local Binary Pattern
    Luo, Jhu-Sin
    Lo, Dan Chia-Tien
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 4664 - 4667
  • [35] A Multi-Kernel Mode Using a Local Binary Pattern and Random Patch Convolution for Hyperspectral Image Classification
    Huang, Wei
    Huang, Yao
    Wu, Zebin
    Yin, Junru
    Chen, Qiqiang
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4607 - 4620
  • [36] Extended Mapping Local Binary Pattern Operator for Texture Classification
    Shakoor, Mohammad Hossein
    Boostani, Reza
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2017, 31 (06)
  • [37] Rotation-invariant Local Binary Pattern Texture Classification
    Doshi, Niraj P.
    Schaefer, Gerald
    [J]. PROCEEDINGS ELMAR-2012, 2012, : 71 - 74
  • [38] Pit Pattern Classification using Extended Local Binary Patterns
    Haefner, M.
    Gangl, A.
    Liedlgruber, M.
    Uhl, A.
    Vecsei, A.
    Wrba, F.
    [J]. 2009 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS IN BIOMEDICINE, 2009, : 460 - +
  • [39] Leaf Classification Using Completed Local Binary Pattern Of Textures
    Muthevi, Anilkumar
    Uppu, Ravi Babu
    [J]. 2017 7TH IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2017, : 870 - 874
  • [40] Local Binary Pattern Regrouping for Rotation Invariant Texture Classification
    Asma, Zitouni
    Brahim, Nini
    [J]. JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2022, 15 (01)