Bayesian inference for the log-symmetric autoregressive conditional duration model

被引:2
|
作者
Leao, Jeremias [1 ]
Paixao, Rafael [2 ]
Saulo, Helton [3 ]
Leao, Themis [1 ]
机构
[1] Univ Fed Amazonas, Dept Estat, Campus Senador Arthur Virgilio Filho, BR-69080900 Manaus, Amazonas, Brazil
[2] Univ Sao Paulo, Dept Estat, Campus 1,Av Trab Sao Carlense 400, BR-400 Sao Carlos, SP, Brazil
[3] Univ Brasilia, Dept Estat, Campus Univ Darcy Ribeiro, BR-70910900 Brasilia, DF, Brazil
来源
关键词
ACD models; Bayesian inference; high frequency financial data; log-symmetric distributions; OUTLIER DETECTION; FAMILY; DISTRIBUTIONS; MANAGEMENT;
D O I
10.1590/0001-3765202120190301
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper adapts Hamiltonian Monte Carlo methods for application in log-symmetric autoregressive conditional duration models. These recent models are based on a class of log-symmetric distributions. In this class, it is possible to model both median and skewness of the duration time distribution. We use the Bayesian approach to estimate the model parameters of some log-symmetric autoregressive conditional duration models and evaluate their performance using a Monte Carlo simulation study. The usefulness of the estimation methodology is demonstrated by analyzing a high frequency financial data set from the German DAX of 2016.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Conditional Predictive Inference for Beta Regression Model with Autoregressive Errors
    Ferreira, Guillermo
    Paul Navarrete, Jean
    Castro, Luis M.
    de Castro, Mario
    [J]. INTERDISCIPLINARY BAYESIAN STATISTICS, EBEB 2014, 2015, 118 : 357 - 366
  • [32] Bayesian analysis of the stochastic conditional duration model
    Strickland, CM
    Forbes, CS
    Martin, GM
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (09) : 2247 - 2267
  • [33] Empirical likelihood inference for threshold autoregressive conditional heteroscedasticity model
    Cuixin Peng
    Zhiwen Zhao
    [J]. Journal of Inequalities and Applications, 2021
  • [34] Log-symmetric models with cure fraction with application to leprosy reactions data
    Rocha, Joyce B.
    Medeiros, Francisco M. C.
    Valenca, Dione M.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2022, 36 (03) : 560 - 578
  • [35] On moment-type estimators for a class of log-symmetric distributions
    Balakrishnan, N.
    Saulo, Helton
    Bourguignon, Marcelo
    Zhu, Xiaojun
    [J]. COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1339 - 1355
  • [36] On moment-type estimators for a class of log-symmetric distributions
    N. Balakrishnan
    Helton Saulo
    Marcelo Bourguignon
    Xiaojun Zhu
    [J]. Computational Statistics, 2017, 32 : 1339 - 1355
  • [37] Least absolute deviation estimation of autoregressive conditional duration model
    Liu Wei
    Hui-min Wang
    Min Chen
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 243 - 254
  • [38] An autoregressive conditional duration model of credit-risk contagion
    Focardi, Sergio M.
    Fabozzi, Frank J.
    [J]. JOURNAL OF RISK FINANCE, 2005, 6 (03) : 208 - 225
  • [39] A moment closed form estimator for the autoregressive conditional duration model
    Wanbo Lu
    Rui Ke
    Jingwen Liang
    [J]. Statistical Papers, 2016, 57 : 329 - 344
  • [40] A moment closed form estimator for the autoregressive conditional duration model
    Lu, Wanbo
    Ke, Rui
    Liang, Jingwen
    [J]. STATISTICAL PAPERS, 2016, 57 (02) : 329 - 344