Linking missing data to study outcomes using multiple imputations

被引:0
|
作者
Ibrahim, Khadija [1 ]
机构
[1] Mem Univ Newfoundland, Fac Med, Div Biomed Sci, St John, NF, Canada
关键词
D O I
10.17269/CJPH.106.4914
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
引用
收藏
页码:E82 / E82
页数:1
相关论文
共 50 条
  • [21] Imputations of missing values using a tracking-removed autoencoder trained with incomplete data
    Lai, Xiaochen
    Wu, Xia
    Zhang, Liyong
    Lu, Wei
    Zhong, Chongquan
    [J]. NEUROCOMPUTING, 2019, 366 (54-65) : 54 - 65
  • [22] Multiple Imputations Particle Filters: Convergence and Performance Analyses for Nonlinear State Estimation With Missing Data
    Zhang, Xiao-Ping
    Khwaja, Ahmed Shaharyar
    Luo, Ji-An
    Housfater, Alon Shalev
    Anpalagan, Alagan
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2015, 9 (08) : 1536 - 1547
  • [23] Recovering incomplete data using Statistical Multiple Imputations (SMI): A case study in environmental chemistry
    Mercer, Theresa G.
    Frostick, Lynne E.
    Walmsley, Anthony D.
    [J]. TALANTA, 2011, 85 (05) : 2599 - 2604
  • [24] Expanding Tidy Data Principles to Facilitate Missing Data Exploration, Visualization and Assessment of Imputations
    Tierney, Nicholas
    Cook, Dianne
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2023, 105 (07): : 1 - 31
  • [25] Evaluating the Use of Uncertainty Visualisations for Imputations of Data Missing at Random in Scatterplots
    Sarma A.
    Guo S.
    Hoffswell J.
    Rossi R.
    Du F.
    Koh E.
    Kay M.
    [J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29 (01) : 602 - 612
  • [26] Multiple Imputation of Missing Composite Outcomes in Longitudinal Data
    O’Keeffe A.G.
    Farewell D.M.
    Tom B.D.M.
    Farewell V.T.
    [J]. Statistics in Biosciences, 2016, 8 (2) : 310 - 332
  • [27] Missing Value Imputations by Rule-Based Incomplete Data Fuzzy Modeling
    Lai, Xiaochen
    Liu, Xin
    Zhang, Liyong
    Lin, Chi
    Obaidat, Mohammad S.
    Hsiao, Kuei-Fang
    [J]. ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [28] Multiple imputation using chained equations for missing data in TIMSS: a case study
    Bouhlila D.S.
    Sellaouti F.
    [J]. Large-scale Assessments in Education, 1 (1)
  • [29] Multiple imputations by chained equations for recovering missing daily streamflow observations: a case study of Langat River basin in Malaysia
    Hamzah, Fatimah Bibi
    Mohamad Hamzah, Firdaus
    Mohd Razali, Siti Fatin
    El-Shafie, Ahmed
    [J]. HYDROLOGICAL SCIENCES JOURNAL, 2022, 67 (01) : 137 - 149
  • [30] Comment on maternal Perfluoroalkyl Substances, Thyroid Hormones, and DIO Genes: A Spanish Cross-sectional Study: Predictability of Multiple Imputations for Large Amounts of Missing Data
    Kobayashi, Sumitaka
    Harada, Kouji H.
    [J]. Environmental Science and Technology, 2022, 56 (08): : 5276 - 5277