Reducing Surface Recombination Velocity of Methylammonium-Free Mixed-Cation Mixed-Halide Perovskites via Surface Passivation

被引:41
|
作者
Jariwala, Sarthak [1 ,2 ]
Burke, Sven [1 ,2 ,3 ]
Dunfield, Sean [4 ,5 ]
Shallcross, R. Clayton [6 ]
Taddei, Margherita [1 ,6 ]
Wang, Jian [1 ]
Eperon, Giles E. [4 ,7 ]
Armstrong, Neal R. [6 ]
Berry, Joseph J. [4 ]
Ginger, David S. [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[2] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[3] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15289 USA
[4] Natl Renewable Energy Lab, Golden, CO 80401 USA
[5] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA
[6] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA
[7] Swift Solar Inc, San Carlos, CA 94070 USA
基金
美国国家科学基金会;
关键词
BAND GAP PEROVSKITES; SOLAR-CELL; LEAD-IODIDE; CARRIER LIFETIME; HIGH-EFFICIENCY; PHOTOLUMINESCENCE; FILMS; CONDENSATION; SEGREGATION; DETERMINES;
D O I
10.1021/acs.chemmater.1c00848
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We control surface recombination in the mixed-cation, mixed-halide perovskite, FA(0.83)Cs(0.17)Pb(I0.85Br0.15)(3), by passivating nonradiative defects with the polymerizable Lewis base (3-aminopropyl)trimethoxysilane (APTMS). We demonstrate average minority carrier lifetimes >4 mu s, nearly single exponential monomolecular photoluminescence decays, and high external photoluminescence quantum efficiencies (>20%, corresponding to similar to 97% of the maximum theoretical quasi-Fermi-level splitting) at low excitation fluence. We confirm both the composition and valence band edge position of the FA(0.83)Cs(0.17)Pb(I0.85Br0.15)(3) perovskite using multi-institutional, cross-validated, X-ray photoelectron spectroscopy and UV photoelectron spectroscopy measurements. We extend the APTMS surface passivation to higher bandgap double-cation (FA and Cs) compositions (1.7, 1.75, and 1.8 eV) as well as the widely used triple-cation (FA, MA, and Cs) composition. Finally, we demonstrate that the average surface recombination velocity decreases from similar to 1000 to similar to 10 cm/s post APTMS passivation for FA(0.83)Cs(0.17)Pb(I0.85Br0.15)(3). Our results demonstrate that surface-mediated recombination is the primary nonradiative loss pathway in many methylammonium (MA)-free mixed-cation mixed-halide films with a range of different bandgaps, which is a problem observed for a wide range of perovskite active layers and reactive electrical contacts. Our study also provides insights to develop passivating molecules that help reduce surface recombination in MA-free mixed-cation mixed-halide films and indicates that surface passivation and contact engineering will enable near-theoretical device efficiencies with these materials.
引用
收藏
页码:5035 / 5044
页数:10
相关论文
共 50 条
  • [41] Efficient light-emitting devices based on mixed-cation lead halide perovskites
    Xiao, Zewu
    Wang, Qi
    Wu, Xiaoyuan
    Wu, Yanting
    Ren, Jie
    Xiong, Zuhong
    Yang, Xiaohui
    ORGANIC ELECTRONICS, 2020, 77
  • [42] Investigation of Opto-Electronic Properties and Stability of Mixed-Cation Mixed-Halide Perovskite Materials with Machine-Learning Implementation
    Filipoiu, Nicolae
    Mitran, Tudor Luca
    Anghel, Dragos Victor
    Florea, Mihaela
    Pintilie, Ioana
    Manolescu, Andrei
    Nemnes, George Alexandru
    ENERGIES, 2021, 14 (17)
  • [43] Suppression and Reversion of Light-Induced Phase Separation in Mixed-Halide Perovskites by Oxygen Passivation
    Fan, Weisheng
    Shi, Yongliang
    Shi, Tongfei
    Chu, Shenglong
    Chen, Wenjing
    Ighodalo, Kester O.
    Zhao, Jin
    Li, Xinhua
    Xiao, Zhengguo
    ACS ENERGY LETTERS, 2019, 4 (09) : 2052 - 2058
  • [44] Highly efficient mixed-halide mixed-cation perovskite solar cells based on rGO-TiO2 composite nanofibers
    Patil, Jyoti V.
    Mali, Sawanta S.
    Patil, Akhilesh P.
    Patil, Pramod S.
    Hong, Chang Kook
    ENERGY, 2019, 189
  • [45] Effects of Co-Addition of Sodium Chloride and Copper(II) Bromide to Mixed-Cation Mixed-Halide Perovskite Photovoltaic Devices
    Ueoka, Naoki
    Oku, Takeo
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (08) : 7272 - 7283
  • [46] Enhanced piezo-response of mixed-cation copper perovskites with Cl/Br halide engineering
    Elattar, Amr
    Munoz, Christopher
    Kobera, Libor
    Mahun, Andrii
    Brus, Jiri
    Uddin, Mohammed Jasim
    Hayashi, Yasuhiko
    Okoli, Okenwa
    Dickens, Tarik
    MATERIALS ADVANCES, 2024, 5 (22): : 8953 - 8960
  • [47] Engineering the Non-Radiative Recombination of Mixed-Halide Perovskites with Optimal Bandgap for Indoor Photovoltaics
    Li, Yanyan
    Li, Ruiming
    Lin, Qianqian
    SMALL, 2022, 18 (26)
  • [48] Impact of Rubidium and Cesium Cations on the Moisture Stability of Multiple-Cation Mixed-Halide Perovskites
    Hu, Yinghong
    Aygueler, Meltem F.
    Petrus, Michiel L.
    Bein, Thomas
    Docampo, Pablo
    ACS ENERGY LETTERS, 2017, 2 (10): : 2212 - 2218
  • [49] Solid-State Nuclear Magnetic Resonance of Triple-Cation Mixed-Halide Perovskites
    Landi, Noemi
    Maurina, Elena
    Marongiu, Daniela
    Simbula, Angelica
    Borsacchi, Silvia
    Calucci, Lucia
    Saba, Michele
    Carignani, Elisa
    Geppi, Marco
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (40): : 9517 - 9525
  • [50] Role of Mixed-Cation Perovskites in Hole Conductor-Free Perovskite Solar Cells
    Shpatz Dayan, Adva
    Etgar, Lioz
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (21) : 11005 - 11011