The nonholonomy of the rolling sphere

被引:12
|
作者
Johnson, Brody Dylan [1 ]
机构
[1] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2007年 / 114卷 / 06期
关键词
D O I
10.1080/00029890.2007.11920439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:500 / 508
页数:9
相关论文
共 50 条
  • [31] Planning the Motion of a Sliding and Rolling Sphere
    Jia, Yan-Bin
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 2396 - 2402
  • [32] A Modified Version of the Rolling Sphere Method
    Ait-Amar, Sonia
    Berger, Gerard
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2009, 16 (03) : 718 - 725
  • [33] Bound for the degree of nonholonomy in the plane
    DMI, Paris, France
    Theor Comput Sci, 1 (129-136):
  • [34] Sphere Rolling on Sphere: Alternative Approach to Kinematics and Constructive Proof of Controllability
    Silva Leite, F.
    Louro, F.
    DYNAMICS, GAMES AND SCIENCE, 2015, 1 : 341 - 356
  • [35] The Degree of Nonholonomy in Distributed Computations
    Costello, Zak
    Egerstedt, Magnus
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 6092 - 6098
  • [36] Quantized control systems and discrete nonholonomy
    Bicchi, A
    Marigo, A
    Piccoli, B
    LAGRANGIAN AND HAMILTONIAN METHODS FOR NONLINEAR CONTROL, 2000, : 19 - 26
  • [37] Rolling sphere problems on spaces of constant curvature
    Jurdjevic, V.
    Zimmerman, J.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 144 : 729 - 747
  • [38] Optimal Control of the Sphere Sn Rolling on En
    Jason A. Zimmerman
    Mathematics of Control, Signals and Systems, 2005, 17 : 14 - 37
  • [39] Analytic study of a rolling sphere on a rough surface
    Florea, Olivia A.
    Rosca, Ileana C.
    AIP ADVANCES, 2016, 6 (11):
  • [40] Movements of a sphere rolling down an inclined plane
    Jan, CD
    Chen, JC
    JOURNAL OF HYDRAULIC RESEARCH, 1997, 35 (05) : 689 - 706