Regular embeddings of Cartesian product graphs

被引:0
|
作者
Zhang, Jun-Yang [1 ,2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Zhangzhou Normal Univ, Dept Math & Informat Sci, Zhangzhou 363000, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Regular map; Cartesian product; Grid-like graph;
D O I
10.1016/j.disc.2011.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved in this paper that if a Cartesian power X(n) of a prime graph X (with respect to the Cartesian multiplication) has an orientable regular embedding, then X has an orientable regular embedding too; and if a graph with some extra conditions has orientable regular embeddings, then its Cartesian power also has. As an application of our main theorems, the regular embeddings of grid-like graphs are studied. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:258 / 264
页数:7
相关论文
共 50 条
  • [41] THE THICKNESS OF AMALGAMATIONS AND CARTESIAN PRODUCT OF GRAPHS
    Yang, Yan
    Chen, Yichao
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 561 - 572
  • [42] Extraconnectivity of Cartesian product graphs of paths
    Fu, Mingyan
    Yang, Weihua
    Meng, Jixiang
    ARS COMBINATORIA, 2010, 96 : 515 - 520
  • [43] Game Coloring the Cartesian Product of Graphs
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2008, 59 (04) : 261 - 278
  • [44] Gromov hyperbolicity in Cartesian product graphs
    Michel, Junior
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (05): : 593 - 609
  • [45] The Menger number of the Cartesian product of graphs
    Ma, Meijie
    Xu, Jun-Ming
    Zhu, Qiang
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 627 - 629
  • [46] On the security number of the Cartesian product of graphs
    Jakovac, Marko
    Otachi, Yota
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 119 - 128
  • [47] The Cover Time of Cartesian Product Graphs
    Abdullah, Mohammed
    Cooper, Colin
    Radzik, Tomasz
    COMBINATORIAL ALGORITHMS, 2011, 6460 : 377 - 389
  • [48] Betweenness centrality in Cartesian product of graphs
    Kumar, Sunil R.
    Balakrishnan, Kannan
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 571 - 583
  • [49] THE DIAMETER VARIABILITY OF THE CARTESIAN PRODUCT OF GRAPHS
    Chithra, M. R.
    Vijayakumar, A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (01)
  • [50] The Thickness of the Cartesian Product of Two Graphs
    Chen, Yichao
    Yin, Xuluo
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (04): : 705 - 720