HIDDEN REGULAR VARIATION FOR POINT PROCESSES AND THE SINGLE/MULTIPLE LARGE POINT HEURISTIC
被引:1
|
作者:
Dombry, Clement
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bourgogne Franche Comte, Lab Math Besancon, UMR CNRS 6623, Besancon, FranceUniv Bourgogne Franche Comte, Lab Math Besancon, UMR CNRS 6623, Besancon, France
Dombry, Clement
[1
]
Tillier, Charles
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Lab Math Versailles, Univ Versailles St Quentin En Yvelines, UMR CNRS 8100, Paris, FranceUniv Bourgogne Franche Comte, Lab Math Besancon, UMR CNRS 6623, Besancon, France
Tillier, Charles
[2
]
Wintenberger, Olivier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Lab Probabilites Stat & Modelisat, UMR 8001, Paris, FranceUniv Bourgogne Franche Comte, Lab Math Besancon, UMR CNRS 6623, Besancon, France
Wintenberger, Olivier
[3
]
机构:
[1] Univ Bourgogne Franche Comte, Lab Math Besancon, UMR CNRS 6623, Besancon, France
[2] Univ Paris Saclay, Lab Math Versailles, Univ Versailles St Quentin En Yvelines, UMR CNRS 8100, Paris, France
[3] Univ Paris 06, Lab Probabilites Stat & Modelisat, UMR 8001, Paris, France
Regular variation;
point process;
hidden regular variation;
risk theory;
LARGE DEVIATIONS;
EXTREMAL BEHAVIOR;
D O I:
10.1214/21-AAP1675
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We consider regular variation for marked point processes with independent heavy-tailed marks and prove a single large point heuristic: the limit measure is concentrated on the cone of point measures with one single point. We then investigate successive hidden regular variation removing the cone of point measures with at most k points, k >= 1, and prove a multiple large point phenomenon: the limit measure is concentrated on the cone of point measures with k + 1 points. We show how these results imply hidden regular variation in Skorokhod space of the associated risk process, in connection with the single/multiple large point heuristic from (Ann. Probab. 47 (2019) 3551-3605). Finally, we provide an application to risk theory in a reinsurance model where the k largest claims are covered and we study the asymptotic behavior of the residual risk.