The influence of interface shear strength on the glide dislocation-interface interactions

被引:121
|
作者
Wang, J. [1 ]
Hoagland, R. G. [1 ]
Liu, X. Y. [1 ]
Misra, A. [2 ]
机构
[1] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA CINT, Los Alamos, NM 87545 USA
关键词
Atomistic modeling; Dislocation; Interfaces; Multilayers; EMBEDDED-ATOM-METHOD; DEFORMATION MECHANISMS; METALLIC MULTILAYERS; ATOMISTIC SIMULATIONS; LAYERED COMPOSITES; WEAK INTERFACES; THIN-FILMS; NANOSCALE; CU; SURFACES;
D O I
10.1016/j.actamat.2011.01.056
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interfaces with relatively low shear strengths can be strong barriers to glide dislocations due to dislocation core spreading within the interface plane. Using atomistic modeling we have studied the influence of interface shear strength on the interaction of lattice glide dislocations with fcc/bcc interfaces. "Tunable" interatomic potentials are employed to vary the interface shear strength for the same interface crystallography. The results show that: (1) the interface shear strength increases as the dilute heat of mixing decreases; (2) the interface shear mechanism involves the nucleation and glide of interfacial dislocations, which is dominated by the atomic structures of interfaces, regardless of the interface shear strength; (3) weak interfaces entrap lattice glide dislocations due to the interface shear and core spreading of dislocations within interfaces. Reverse shear displacement is needed to enable collapse of the spread core for slip transmission. This study provides an insight into the correlation between interface shear strength and glide dislocation trapping at the interface, which is a crucial unit mechanism in understanding the ultra-high strengths observed in nanoscale fcc/bcc multilayers. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
引用
收藏
页码:3164 / 3173
页数:10
相关论文
共 50 条
  • [1] Concurrent interface shearing and dislocation core change on the glide dislocation-interface interactions: a phase field approach
    Zheng, Songlin
    Ni, Yong
    He, Linghui
    [J]. AIMS MATERIALS SCIENCE, 2015, 2 (03) : 260 - 278
  • [2] ATOMISTIC MODELING OF DISLOCATION-INTERFACE INTERACTIONS
    Wang, J.
    Beyerlein, I. J.
    Misra, A.
    Valone, S. M.
    Germann, T. C.
    [J]. ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2011, 2011, : 39 - +
  • [3] DISLOCATION-INTERFACE INTERACTIONS IN EXSOLVED AUGITE
    SKROTZKI, W
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 175 (1-2): : 149 - 158
  • [4] Atomistic Simulations of dislocation-interface interactions in thin films
    Leger, RW
    Shen, YL
    [J]. NANOSCALE MATERIALS AND MODELING-RELATIONS AMONG PROCESSING, MICROSTRUCTURE AND MECHANICAL PROPERTIES, 2004, 821 : 209 - 214
  • [5] Parametric atomistic analysis of dislocation-interface interactions in thin metallic films
    Shen, YL
    Leger, RW
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 423 (1-2): : 102 - 106
  • [6] Atomistic simulations of dislocation-interface interactions in the Cu-Ni multilayer system
    Rao, SI
    Hazzledine, PM
    [J]. PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 2000, 80 (09): : 2011 - 2040
  • [7] Atomistic simulations of dislocation-interface interactions in the Cu-Ni multilayer system
    Rao, SI
    Hazzledine, PM
    [J]. MULTISCALE PHENOMENA IN MATERIALS-EXPERIMENTS AND MODELING, 2000, 578 : 389 - 394
  • [8] Elastic analysis of finite stiffness bimaterial interfaces: Application to dislocation-interface interactions
    Shilkrot, LE
    Srolovitz, DJ
    [J]. ACTA MATERIALIA, 1998, 46 (09) : 3063 - 3075
  • [9] Dislocation-interface interaction - stress accommodation processes at interfaces
    Priester, L
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 309 : 430 - 439
  • [10] Dislocation-interface interaction in nanoscale fcc metallic bilayers
    Shao, Shuai
    Medyanik, Sergey N.
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2010, 37 (03) : 315 - 319