Nonequilibrium Dynamical Mean-Field Theory for Bosonic Lattice Models

被引:29
|
作者
Strand, Hugo U. R. [1 ]
Eckstein, Martin [2 ]
Werner, Philipp [1 ]
机构
[1] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
[2] Univ Hamburg CFEL, Max Planck Res Dept Struct Dynam, D-22761 Hamburg, Germany
来源
PHYSICAL REVIEW X | 2015年 / 5卷 / 01期
关键词
INSULATOR TRANSITION; INFINITE DIMENSIONS; OPTICAL LATTICES; MOTT INSULATOR; LOCALIZATION; QUENCHES; SYSTEMS; LIGHT;
D O I
10.1103/PhysRevX.5.011038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop the nonequilibrium extension of bosonic dynamical mean-field theory and a Nambu real-time strong-coupling perturbative impurity solver. In contrast to Gutzwiller mean-field theory and strong-coupling perturbative approaches, nonequilibrium bosonic dynamical mean-field theory captures not only dynamical transitions but also damping and thermalization effects at finite temperature. We apply the formalism to quenches in the Bose-Hubbard model, starting from both the normal and the Bose-condensed phases. Depending on the parameter regime, one observes qualitatively different dynamical properties, such as rapid thermalization, trapping in metastable superfluid or normal states, as well as long-lived or strongly damped amplitude oscillations. We summarize our results in nonequilibrium "phase diagrams" that map out the different dynamical regimes.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Mean-field dynamical density functional theory
    Dzubiella, J
    Likos, CN
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (06) : L147 - L154
  • [32] Dynamical Mean-Field Theory of Nickelate Superlattices
    Han, M. J.
    Wang, Xin
    Marianetti, C. A.
    Millis, A. J.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (20)
  • [33] Nonequilibrium mean-field theory of resistive phase transitions
    Han, Jong E.
    Li, Jiajun
    Aron, Camille
    Kotliar, Gabriel
    [J]. PHYSICAL REVIEW B, 2018, 98 (03)
  • [34] Multiconfiguration time-dependent Hartree impurity solver for nonequilibrium dynamical mean-field theory
    Balzer, Karsten
    Li, Zheng
    Vendrell, Oriol
    Eckstein, Martin
    [J]. PHYSICAL REVIEW B, 2015, 91 (04)
  • [35] Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory
    Tan, Hui
    Cao, Rui
    Li, Yong-Qiang
    [J]. ACTA PHYSICA SINICA, 2023, 72 (18)
  • [36] Hopping on the Bethe lattice: Exact results for densities of states and dynamical mean-field theory
    Eckstein, M
    Kollar, M
    Byczuk, K
    Vollhardt, D
    [J]. PHYSICAL REVIEW B, 2005, 71 (23)
  • [37] Orbital effect of the magnetic field in dynamical mean-field theory
    Acheche, S.
    Arsenault, L. -F.
    Tremblay, A. -M. S.
    [J]. PHYSICAL REVIEW B, 2017, 96 (23)
  • [38] NONEQUILIBRIUM PHASE-TRANSITIONS IN LATTICE SYSTEMS WITH RANDOM-FIELD COMPETING KINETICS - MEAN-FIELD THEORY
    ALONSO, JJ
    MARRO, J
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (47) : 9309 - 9320
  • [39] Numerical calculation of spectral functions of the Bose-Hubbard model using bosonic dynamical mean-field theory
    Panas, Jaromir
    Kauch, Anna
    Kunes, Jan
    Vollhardt, Dieter
    Byczuk, Krzysztof
    [J]. PHYSICAL REVIEW B, 2015, 92 (04)
  • [40] Dynamical mean-field theory study of Nagaoka ferromagnetism
    Park, Hyowon
    Haule, K.
    Marianetti, C. A.
    Kotliar, G.
    [J]. PHYSICAL REVIEW B, 2008, 77 (03):