Ferroelectric and magnetic properties in ε-Fe2O3 epitaxial film

被引:4
|
作者
Hamasaki, Yosuke [1 ]
Yasui, Shintaro [2 ,3 ]
Katayama, Tsukasa [4 ]
Kiguchi, Takanori [5 ]
Sawai, Shinya [1 ]
Itoh, Mitsuru [2 ,6 ]
机构
[1] Natl Def Acad, Dept Appl Phys, Yokosuka, Kanagawa 2398686, Japan
[2] Tokyo Inst Technol, Lab Mat & Struct, Midori Ku, 4259-J2-19,Nagatsuta Cho, Yokohama, Kanagawa 2268503, Japan
[3] Tokyo Inst Technol, Lab Zerocarbon Energy, Meguro Ku, 2-12-1,Ookayama, Tokyo 1528550, Japan
[4] Hokaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010020, Japan
[5] Tohoku Univ, Inst Mat Res, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[6] Natl Inst Adv Ind Sci & Technol, Res Inst Adv Elect & Photon RIAEP, Cent-2,1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
关键词
THIN-FILMS; CRYSTAL; OXIDES; PHASE;
D O I
10.1063/5.0063021
中图分类号
O59 [应用物理学];
学科分类号
摘要
The phase stability, ferroelectricity, and magnetism of highly crystalline epitaxial epsilon-Fe2O3 films deposited on SrTiO3(111) substrates are reported. Temperature-dependent x-ray diffraction measurements revealed that alpha-Fe2O3 appeared as a secondary phase after samples were annealed up to 1000 & DEG;C. A clear saturated and opened polarization-electric field hysteresis loop with the remnant polarization & SIM;2.6 mu C cm(-2) and coercive electric field & SIM;100 kV cm(-1) was obtained at room temperature using a conventional ferroelectric measurement technique. The magnetic phase transition was observed at 155 K. Magnetization-magnetic field measurements revealed that magnetic softening via the phase transition accompanied a reduction in the coercive field from 10 to 6.8 kOe, which is smaller than the coercive field reduction previously observed for epsilon-Fe2O3 nanoparticles.</p>
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] Electrical and magnetic properties of γ-Fe2O3 epitaxial films
    Hasegawa, Manabu
    Yanagihara, H.
    Toyoda, Yuta
    Kita, Eiji
    Ranno, L.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 2283 - 2285
  • [2] Magnetic properties of α-Fe2O3 nanopallets
    Ying-Ying Xu
    Long Wang
    Tong Wu
    Rong-Ming Wang
    Rare Metals, 2019, 38 (01) : 14 - 19
  • [3] Magnetic properties of α-Fe2O3 nanowires
    Xu, YY
    Rui, XF
    Fu, YY
    Zhang, H
    CHEMICAL PHYSICS LETTERS, 2005, 410 (1-3) : 36 - 38
  • [4] Magnetic properties of α-Fe2O3 nanopallets
    Ying-Ying Xu
    Long Wang
    Tong Wu
    Rong-Ming Wang
    Rare Metals, 2019, 38 : 14 - 19
  • [5] Magnetic properties of γ-Fe2O3 nanoparticles
    Predoi, D
    Kuncser, V
    Nogues, M
    Tronc, E
    Jolive, JP
    Filoti, G
    Schinteie, G
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2003, 5 (01): : 211 - 216
  • [6] Magnetic properties of γ-Fe2O3 nanoparticles
    Choi, B. J.
    Kim, S. H.
    Jeon, Y. T.
    Moon, J. Y.
    Lee, G. H.
    Chang, Y.
    Park, J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (25-27): : 4422 - 4425
  • [7] Magnetic properties of -Fe2O3 nanopallets
    Xu, Ying-Ying
    Wang, Long
    Wu, Tong
    Wang, Rong-Ming
    RARE METALS, 2019, 38 (01) : 14 - 19
  • [8] Synthesis of α-Fe2O3 hexagons and their magnetic properties
    Xia, Chuanhui
    Hu, Chenguo
    Xiong, Yufeng
    Wang, Na
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 480 (02) : 970 - 973
  • [9] Structural and magnetic properties of α-Fe2O3 nanoparticles
    Suber, L
    Santiago, AG
    Fiorani, D
    Imperatori, P
    Testa, AM
    Angiolini, M
    Montone, A
    Dormann, JL
    APPLIED ORGANOMETALLIC CHEMISTRY, 1998, 12 (05) : 347 - 351
  • [10] Magnetic Properties of Fe2O3/ZnO Nanocomposites
    Typek, J.
    Wardal, K.
    Zolnierkiewicz, G.
    Guskos, N.
    Narkiewicz, U.
    NANOTECHNOLOGY IN THE SECURITY SYSTEMS, 2015, : 93 - 109