A Case-Based Data-Driven Prediction Framework for Machine Fault Prognostics

被引:0
|
作者
Cheng, Fangzhou [1 ]
Qu, Liyan [1 ]
Qiao, Wei [1 ]
机构
[1] Univ Nebraska, Dept Elect & Comp Engn, Power & Energy Syst Lab, Lincoln, NE 68588 USA
关键词
Adaptive neuro-fuzzy inference system (ANFIS); condition-based maintenance (CBM); case-based method; data-driven method; multistep-ahead prediction; prognosis; LONG-TERM PREDICTION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Fault prognosis is an important step to achieve condition-based maintenance for machinery systems. The existing fault prognostic methods can generally be categorized into three major classes: case-based, data-driven, and model-based methods. This paper proposes a novel case-based data-driven prognostic framework based on the adaptive neuro-fuzzy inference system (ANFIS) and big data concept. The framework contains two phases. One is an offline learning phase, in which big historical data are used to build an ANFIS model-case library. The other is the online prognostic phase, in which the fault prognosis of a new machinery system (i.e., a new case) is accomplished by using the proper ANFIS model(s) chosen from the model-case library. The proposed framework is tested by using the experimental data of bearing faults collected from a bearing test rig. Result shows that it has better fault prognostic accuracy than the traditional data-driven method.
引用
收藏
页码:3957 / 3963
页数:7
相关论文
共 50 条
  • [31] Principal Component Analysis: Mechanical Fault Prediction Based on Data-Driven Technique
    Lin, Luhui
    Ma, Jie
    [J]. PROCEEDINGS OF ANNUAL CONFERENCE OF CHINA INSTITUTE OF COMMUNICATIONS, 2010, : 44 - 48
  • [32] Towards online data-driven prognostics system
    Elattar, Hatem M.
    Elminir, Hamdy K.
    Riad, A. M.
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2018, 4 (04) : 271 - 282
  • [33] A data-driven probabilistic framework towards the in-situ prognostics of fatigue life of composites based on acoustic emission data
    Loutas, Theodoros
    Eleftheroglou, Nick
    Zarouchas, Dimitrios
    [J]. COMPOSITE STRUCTURES, 2017, 161 : 522 - 529
  • [34] A Generalized Predictive Framework for Data Driven Prognostics and Diagnostics using Machine Logs
    Xiang, Shili
    Huang, Dong
    Li, Xiaoli
    [J]. PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 0695 - 0700
  • [35] A data-driven predictive maintenance strategy based on accurate failure prognostics
    Chen C.
    Wang C.
    Lu N.
    Jiang B.
    Xing Y.
    [J]. Eksploatacja i Niezawodnosc, 2021, 23 (02) : 387 - 394
  • [36] Data-driven models in machine learning for crime prediction
    Wawrzyniak, Zbigniew M.
    Jankowski, Stanislaw
    Szczechla, Eliza
    Szymanski, Zbigniew
    Pytlak, Radoslaw
    Michalak, Pawel
    Borowik, Grzegorz
    [J]. 2018 26TH INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING (ICSENG 2018), 2018,
  • [37] A data-driven framework for intonational phrase break prediction
    Maragoudakis, M
    Zervas, P
    Fakotakis, N
    Kokkinakis, G
    [J]. TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2003, 2807 : 189 - 197
  • [38] Component based Data-driven Prognostics for Complex Systems: Methodology and Applications
    Mosallam, A.
    Medjaher, K.
    Zerhouni, N.
    [J]. PROCEEDINGS OF THE 2015 FIRST INTERNATIONAL CONFERENCE ON RELIABILITY SYSTEMS ENGINEERING 2015 ICRSE, 2015,
  • [39] A data-driven predictive maintenance strategy based on accurate failure prognostics
    Chen, Chuang
    Wang, Cunsong
    Lu, Ningyun
    Jiang, Bin
    Xing, Yin
    [J]. EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2021, 23 (02): : 387 - 394
  • [40] A Data-Driven Fault Prediction Method for Nuclear Power Systems Based on End-to-End Deep Learning Framework
    Chao, Lu
    Wang, Chunbing
    Chen, Shuai
    Duan, Qizhi
    Xie, Hongyun
    [J]. SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS, 2022, 2022