Lithium-ion diffusion in the grain boundary of polycrystalline solid electrolyte Li6.75La3Zr1.5Ta0.5O12 (LLZTO): a computer simulation and theoretical study

被引:5
|
作者
Cui, Jiahao [1 ]
Meng, Lingchen [4 ]
Jiang, Shan [5 ]
Wang, Kangping [1 ]
Qian, Jingyu [1 ]
Wang, Xiyang [2 ,3 ]
机构
[1] CALB Technol Co Ltd, Changzhou 213200, Peoples R China
[2] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
[3] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
[4] Sinopec, Dalian Res Inst Petmleum & Petrochem, Dalian 116045, Peoples R China
[5] Liaoning Normal Univ, Coll Chem & Chem Engn, Dalian 116029, Peoples R China
关键词
TOTAL-ENERGY CALCULATIONS; INTERPHASE; SEMICONDUCTORS; COEFFICIENT; COMPONENTS; EFFICIENCY; TRANSPORT; DYNAMICS; GRADIENT; BATTERY;
D O I
10.1039/d2cp02766f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion diffusion ability in solid electrolytes is crucial for the performance and safety of lithium-ion batteries. However, the lithium-ion diffusion coefficient of Li6.75La3Zr1.5Ta0.5O12 (LLZTO) measured experimentally is much lower than that simulated theoretically because LLZTO exists widely in the polycrystalline form rather than in the single-crystal form. Herein, we focus on the construction of grain boundaries in polycrystalline materials to address this key issue. An amorphous structure is created by randomly throwing atoms into a virtual box, where the chemical bonds are broken and rearranged through continuous heating and annealing operations, resulting in a stable framework structure. The lithium-ion diffusion coefficients of polycrystalline LLZTO and single-crystal LLZTO calculated via Ab initio molecular dynamics (AIMD) are consistent with the experimental data in trend. Furthermore, the analysis of the grain boundary composed of the secondary phase in polycrystalline LLZTO reveals that the continuous -O-M-O- metal oxide grid with low formation energy per atom restricts the lithium-ion migration. The lithium-ion migration barriers calculated utilizing density functional theory (DFT) also demonstrate the obstacle of the grain boundary from another perspective.
引用
收藏
页码:27355 / 27361
页数:7
相关论文
共 50 条
  • [1] AnovelLi-ionbasedtransistorwithinLiCoO2/Li6.75La3Zr1.5Ta0.5O12/Agscheme
    Jixiang Yin
    Houning Song
    Peirong Li
    Yuzhi Xing
    Supeng Chen
    Qi Liang
    Yu Feng
    Dong Yang
    Wenxiao Zhao
    Dong Wang
    Qinghao Li
    Pengfei Yu
    Qiang Li
    Xiaosong Liu
    Yanxue Chen
    Progress in Natural Science:Materials International, 2025, 35 (01) : 194 - 200
  • [2] A novel Li-ion based transistor within LiCoO2/Li6.75La3Zr1.5Ta0.5O12/Ag scheme
    Yin, Jixiang
    Song, Houning
    Li, Peirong
    Xing, Yuzhi
    Chen, Supeng
    Liang, Qi
    Feng, Yu
    Yang, Dong
    Zhao, Wenxiao
    Wang, Dong
    Li, Qinghao
    Yu, Pengfei
    Li, Qiang
    Liu, Xiaosong
    Chen, Yanxue
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2025, 35 (01) : 194 - 200
  • [3] Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries
    Lu, Juan
    Liu, Yanchen
    Yao, Penghui
    Ding, Zhiyu
    Tang, Qiming
    Wu, Junwei
    Ye, Ziran
    Huang, Kevin
    Liu, Xingjun
    CHEMICAL ENGINEERING JOURNAL, 2019, 367 : 230 - 238
  • [4] Influence of lithium oxide excess and alumina on grain boundary resistance of Li6.75La3Zr1.75Nb0.25O12 solid electrolyte
    Dobretsov, Egor A.
    Mateyshina, Yulia G.
    Uvarov, Nikolai F.
    SOLID STATE IONICS, 2017, 299 : 55 - 59
  • [5] Low-Temperature Sintering of a Garnet-Type Li6.5La3Zr1.5Ta0.5O12 Solid Electrolyte and an All-Solid-State Lithium-Ion Battery
    Akao, Tadayoshi
    Nagai, Hideaki
    Kataoka, Kunimitsu
    Akimoto, Junji
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (15) : 18973 - 18981
  • [6] The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte
    Liu, Jingyuan
    Gao, Xiangwen
    Hartley, Gareth O.
    Rees, Gregory J.
    Gong, Chen
    Richter, Felix H.
    Janek, Juergen
    Xia, Yongyao
    Robertson, Alex W.
    Johnson, Lee R.
    Bruce, Peter G.
    JOULE, 2020, 4 (01) : 101 - 108
  • [7] Thermal properties and lattice anharmonicity of Li-ion conducting garnet solid electrolyte Li6.5La3Zr1.5Ta0.5O12
    Wang, Yitian
    Li, Shuchen
    Wu, Nan
    Jia, Qianru
    Hoke, Thomas
    Shi, Li
    Li, Yutao
    Chen, Xi
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (29) : 18248 - 18257
  • [8] Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries
    Tian, Yijun
    Ding, Fei
    Zhong, Hai
    Liu, Cheng
    He, Yan-Bing
    Liu, Jiaquan
    Liu, Xingjiang
    Xu, Qiang
    ENERGY STORAGE MATERIALS, 2018, 14 : 49 - 57
  • [9] Enhanced Performance of Li6.4La3Zr1.4Ta0.6O12 Solid Electrolyte by the Regulation of Grain and Grain Boundary Phases
    Huang, Zeya
    Chen, Linhui
    Huang, Bing
    Xu, Biyi
    Shao, Gang
    Wang, Hailong
    Li, Yutao
    Wang, Chang-An
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (50) : 56118 - 56125
  • [10] Understanding the origin of lithium dendrite branching in Li6.5La3Zr1.5Ta0.5O12 solid-state electrolyte via microscopy measurements
    Yildirim, Can
    Flatscher, Florian
    Ganschow, Steffen
    Lassnig, Alice
    Gammer, Christoph
    Todt, Juraj
    Keckes, Jozef
    Rettenwander, Daniel
    NATURE COMMUNICATIONS, 2024, 15 (01)