Automated Fetal Brain Extraction from Clinical Ultrasound Volumes Using 3D Convolutional Neural Networks

被引:5
|
作者
Moser, Felipe [1 ]
Huang, Ruobing [1 ]
Papageorghiou, Aris T. [2 ]
Papiez, Bartlomiej W. [1 ,3 ]
Namburete, Ana I. L. [1 ]
机构
[1] Univ Oxford, Inst Biomed Engn, Dept Engn Sci, Oxford, England
[2] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Womens & Reprod Hlth, Oxford, England
[3] Univ Oxford, Li Ka Shing Ctr Hlth Informat & Discovery, Big Data Inst, Oxford, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
3D ultrasound; Fetal; Brain; Extraction; Automated; 3D CNN; Skull stripping;
D O I
10.1007/978-3-030-39343-4_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To improve the performance of most neuroimage analysis pipelines, brain extraction is used as a fundamental first step in the image processing. However, in the case of fetal brain development for routing clinical assessment, there is a need for a reliable Ultrasound (US)-specific tool. In this work we propose a fully automated CNN approach to fetal brain extraction from 3D US clinical volumes with minimal preprocessing. Our method accurately and reliably extracts the brain regardless of the large data variations in acquisition (eg. shadows, occlusions) inherent in this imaging modality. It also performs consistently throughout a gestational age range between 14 and 31 weeks, regardless of the pose variation of the subject, the scale, and even partial feature-obstruction in the image, outperforming all current alternatives.
引用
收藏
页码:151 / 163
页数:13
相关论文
共 50 条
  • [1] Deeply-Supervised 3D Convolutional Neural Networks for Automated Ovary and Follicle Detection from Ultrasound Volumes
    Potocnik, Bozidar
    Savc, Martin
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [2] Auto-delineation of oropharyngeal clinical target volumes using 3D convolutional neural networks
    Cardenas, Carlos E.
    Anderson, Brian M.
    Aristophanous, Michalis
    Yan, Jinzhong
    Rhee, Dong Joo
    McCarroll, Rachel E.
    Mohamed, Abdallah S. R.
    Kamal, Mona
    Elgohari, Baher A.
    Elhalawani, Hesham M.
    Fuller, Clifton D.
    Rao, Arvind
    Garden, Adam S.
    Court, Laurence E.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (21):
  • [3] Fully automated condyle segmentation using 3D convolutional neural networks
    Nayansi Jha
    Taehun Kim
    Sungwon Ham
    Seung-Hak Baek
    Sang-Jin Sung
    Yoon-Ji Kim
    Namkug Kim
    [J]. Scientific Reports, 12
  • [4] Fully automated condyle segmentation using 3D convolutional neural networks
    Jha, Nayansi
    Kim, Taehun
    Ham, Sungwon
    Baek, Seung-Hak
    Sung, Sang-Jin
    Kim, Yoon-Ji
    Kim, Namkug
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [5] INTERPRETING AGE EFFECTS OF HUMAN FETAL BRAIN FROM SPONTANEOUS FMRI USING DEEP 3D CONVOLUTIONAL NEURAL NETWORKS
    Li, Xiangrui
    Hect, Jasmine
    Thomason, Moriah
    Zhu, Dongxiao
    [J]. 2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1424 - 1427
  • [6] AUTOMATED CHARACTERIZATION OF THE FETAL HEART IN ULTRASOUND IMAGES USING FULLY CONVOLUTIONAL NEURAL NETWORKS
    Sundaresan, Vaanathi
    Bridge, Christopher P.
    Ioannou, Christos
    Noble, J. Alison
    [J]. 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 671 - 674
  • [7] AUTOMATED PULMONARY NODULE DETECTION USING 3D DEEP CONVOLUTIONAL NEURAL NETWORKS
    Tang, Hao
    Kim, Daniel R.
    Xie, Xiaohui
    [J]. 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 523 - 526
  • [8] A deep sift convolutional neural networks for total brain volume estimation from 3D ultrasound images
    Jafrasteh, Bahram
    Lubian-Lopez, Simon Pedro
    Benavente-Fernandez, Isabel
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 242
  • [9] Automatic Tumor Segmentation in 3D Automated Breast Ultrasound using Convolutional Neural Network
    Lei, Yang
    He, Xiuxiu
    Wang, Tonghe
    Yao, Jincao
    Wang, Lijing
    Li, Wei
    Curran, Walter J.
    Liu, Tian
    Xu, Dong
    Yang, Xiaofeng
    [J]. MEDICAL IMAGING 2021: ULTRASONIC IMAGING AND TOMOGRAPHY, 2021, 11602
  • [10] LipsID Using 3D Convolutional Neural Networks
    Hlavac, Miroslav
    Gruber, Ivan
    Zelezny, Milos
    Karpov, Alexey
    [J]. SPEECH AND COMPUTER (SPECOM 2018), 2018, 11096 : 209 - 214