Auto-delineation of oropharyngeal clinical target volumes using 3D convolutional neural networks

被引:53
|
作者
Cardenas, Carlos E. [1 ]
Anderson, Brian M. [1 ]
Aristophanous, Michalis [2 ]
Yan, Jinzhong [1 ]
Rhee, Dong Joo [1 ]
McCarroll, Rachel E. [1 ]
Mohamed, Abdallah S. R. [3 ]
Kamal, Mona [3 ]
Elgohari, Baher A. [3 ]
Elhalawani, Hesham M. [3 ]
Fuller, Clifton D. [3 ]
Rao, Arvind [4 ]
Garden, Adam S. [3 ]
Court, Laurence E. [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Radiat Phys, Houston, TX 77030 USA
[2] Univ Chicago, Dept Radiat & Cellular Oncol, Chicago, IL 60637 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX 77030 USA
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2018年 / 63卷 / 21期
关键词
deep learning; head and neck cancer; radiation therapy; convolutional neural network; target volumes; segmentation; LYMPH-NODE REGIONS; AUTOMATIC SEGMENTATION; QUALITY-ASSURANCE; HEAD; CT; DAHANCA; PROSTATE; MARGINS; ERRORS; RISK;
D O I
10.1088/1361-6560/aae8a9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate clinical target volume (CTV) delineation is essential to ensure proper tumor coverage in radiation therapy. This is a particularly difficult task for head-and-neck cancer patients where detailed knowledge of the pathways of microscopic tumor spread is necessary. This paper proposes a solution to auto-segment these volumes in oropharyngeal cancer patients using a two-channel 3D U-Net architecture. The first channel feeds the network with the patient's CT image providing anatomical context, whereas the second channel provides the network with tumor location and morphological information. Radiation therapy simulation computer tomography scans and their corresponding manually delineated CTV and gross tumor volume (GTV) delineations from 285 oropharyngeal patients previously treated at MD Anderson Cancer Center were used in this study. CTV and GTV delineations underwent rigorous group peer-review prior to the start of treatment delivery. The convolutional network's parameters were fine-tuned using a training set of 210 patients using 3-fold cross-validation. During hyper-parameter selection, we use a score based on the overlap (dice similarity coefficient (DSC)) and missed volumes (false negative dice (FND)) to minimize any possible under-treatment. Three auto-delineated models were created to estimate tight, moderate, and wide CTV margin delineations. Predictions on our test set (75 patients) resulted in auto-delineations with high overlap and close surface distance agreement (DSC > 0.75 on 96% of cases for tight and moderate auto-delineation models and 97% of cases having mean surface distance <= 5.0 mm) to the ground-truth. We found that applying a 5 mm uniform margin expansion to the auto-delineated CTVs would cover at least 90% of the physician CTV volumes for a large majority of patients; however, determination of appropriate margin expansions for auto-delineated CTVs merits further investigation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deep Learning On Clinically-Clustered Patients Improves Auto-Delineation of Oropharyngeal High-Risk Clinical Target Volumes
    Cardenas, C.
    McCarroll, R.
    Court, L.
    Elgohari, B.
    Elhalawani, H.
    Fuller, C.
    Jomaa, M.
    Meheissen, M.
    Mohamed, A.
    Rao, A.
    Awong, B. Williams
    Yang, J.
    Aristophanous, M.
    [J]. MEDICAL PHYSICS, 2017, 44 (06) : 3052 - 3052
  • [2] Identifying Oropharyngeal Clinical Target Volumes Delineation Patterns From Peer-Reviewed Clinical Delineations Via Cascade 3D Fully-Convolutional Networks
    Cardenas, C.
    Yang, J.
    Mohamed, A.
    Fuller, C.
    Beadle, B.
    Garden, A.
    Court, L.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E296 - E296
  • [3] Deep Learning Algorithm for Auto-Delineation of High-Risk Oropharyngeal Clinical Target Volumes with Built-in Dice Similarity Coefficient Parameter Optimization Function
    Cardenas, C.
    McCarroll, R.
    Court, L.
    Elgohari, B.
    Elhalawani, H.
    Fuller, C.
    Jomaa, M.
    Meheissen, M.
    Mohamed, A.
    Rao, A.
    Williams, B.
    Wong, A.
    Yang, J.
    Aristophanous, M.
    [J]. MEDICAL PHYSICS, 2017, 44 (06) : 3160 - 3161
  • [4] Deep Learning Algorithm for Auto-Delineation of High-Risk Oropharyngeal Clinical Target Volumes With Built-In Dice Similarity Coefficient Parameter Optimization Function
    Cardenas, Carlos E.
    McCarroll, Rachel E.
    Court, Laurence E.
    Elgohari, Baher A.
    Elhalawani, Hesham
    Fuller, Clifton D.
    Kamal, Mona J.
    Meheissen, Mohamed A. M.
    Mohamed, Abdallah S. R.
    Rao, Arvind
    Williams, Bowman
    Wong, Andrew
    Yang, Jinzhong
    Aristophanous, Michalis
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 101 (02): : 468 - 478
  • [5] Automated Fetal Brain Extraction from Clinical Ultrasound Volumes Using 3D Convolutional Neural Networks
    Moser, Felipe
    Huang, Ruobing
    Papageorghiou, Aris T.
    Papiez, Bartlomiej W.
    Namburete, Ana I. L.
    [J]. MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2019, 2020, 1065 : 151 - 163
  • [6] Predicting the target landscape of kinase inhibitors using 3D convolutional neural networks
    Kanev, Georgi K.
    Zhang, Yaran
    Kooistra, Albert J.
    Bender, Andreas
    Leurs, Rob
    Bailey, David
    Wurdinger, Thomas
    de Graaf, Chris
    de Esch, Iwan J. P.
    Westerman, Bart A.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (09)
  • [7] LipsID Using 3D Convolutional Neural Networks
    Hlavac, Miroslav
    Gruber, Ivan
    Zelezny, Milos
    Karpov, Alexey
    [J]. SPEECH AND COMPUTER (SPECOM 2018), 2018, 11096 : 209 - 214
  • [8] A dual deep neural network for auto-delineation in cervical cancer radiotherapy with clinical validation
    Shihong Nie
    Yuanfeng Wei
    Fen Zhao
    Ya Dong
    Yan Chen
    Qiaoqi Li
    Wei Du
    Xin Li
    Xi Yang
    Zhiping Li
    [J]. Radiation Oncology, 17
  • [9] A dual deep neural network for auto-delineation in cervical cancer radiotherapy with clinical validation
    Nie, Shihong
    Wei, Yuanfeng
    Zhao, Fen
    Dong, Ya
    Chen, Yan
    Li, Qiaoqi
    Du, Wei
    Li, Xin
    Yang, Xi
    Li, Zhiping
    [J]. RADIATION ONCOLOGY, 2022, 17 (01)
  • [10] 3D Pose Regression using Convolutional Neural Networks
    Mahendran, Siddharth
    Ali, Haider
    Vidal, Rene
    [J]. 2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 494 - 495