Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels

被引:60
|
作者
Vallone, Giuseppe [1 ]
Marangon, Davide G. [1 ]
Canale, Matteo [1 ]
Savorgnan, Ilaria [1 ]
Bacco, Davide [1 ]
Barbieri, Mauro [2 ]
Calimani, Simon [1 ]
Barbieri, Cesare [2 ]
Laurenti, Nicola [1 ]
Villoresi, Paolo [1 ]
机构
[1] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
[2] Univ Padua, Dept Phys & Astron, I-35122 Padua, Italy
来源
PHYSICAL REVIEW A | 2015年 / 91卷 / 04期
关键词
CRYPTOGRAPHY; DAYLIGHT; SECURITY;
D O I
10.1103/PhysRevA.91.042320
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The unconditional security in the creation of cryptographic keys obtained by quantum key distribution (QKD) protocols will induce a quantum leap in free-space communication privacy in the same way that we are beginning to realize secure optical fiber connections. However, free-space channels, in particular those with long links and the presence of atmospheric turbulence, are affected by losses, fluctuating transmissivity, and background light that impair the conditions for secure QKD. Here we introduce a method to contrast the atmospheric turbulence in QKD experiments. Our adaptive real time selection (ARTS) technique at the receiver is based on the selection of the intervals with higher channel transmissivity. We demonstrate, using data from the Canary Island 143-km free-space link, that conditions with unacceptable average quantum bit error rate which would prevent the generation of a secure key can be used once parsed according to the instantaneous scintillation using the ARTS technique.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Free-space quantum key distribution with entangled photons
    Marcikic, Ivan
    Lamas-Linares, Antia
    Kurtsiefer, Christian
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (10)
  • [22] Free-space quantum key distribution to a moving receiver
    Bourgoin, Jean-Philippe
    Higgins, Brendon L.
    Gigov, Nikolay
    Holloway, Catherine
    Pugh, Christopher J.
    Kaiser, Sarah
    Cranmer, Miles
    Jennewein, Thomas
    [J]. OPTICS EXPRESS, 2015, 23 (26): : 33437 - 33447
  • [23] Quantum key distribution by a free-space MIMO system
    Gabay, Motti
    Arnon, Shlomi
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (08) : 3114 - 3120
  • [24] Free-Space Optical Quantum Communications in Turbulent Channels With Receiver Diversity
    Yuan, Renzhi
    Cheng, Julian
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (09) : 5706 - 5717
  • [25] Network Coding Aided Cooperative Quantum Key Distribution Over Free-Space Optical Channels
    Hung Viet Nguyen
    Trinh, Phuc V.
    Pham, Anh T.
    Babar, Zunaira
    Alanis, Dimitrios
    Botsinis, Panagiotis
    Chandra, Daryus
    Ng, Soon Xin
    Hanzo, Lajos
    [J]. IEEE ACCESS, 2017, 5 : 12301 - 12317
  • [26] Adaptive-Optics Enhanced Distribution of Entangled Photons over Turbulent Free-Space Optical Channels
    Nafria, Vijay
    Cui, Chaohan
    Djordjevic, Ivan B.
    Zhang, Zheshen
    [J]. 2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [27] Free-space decoy-state quantum key distribution
    Fuerst, M.
    Schmitt-Manderbach, T.
    Weier, H.
    Ursin, R.
    Tiefenbacher, F.
    Scheidl, T.
    Barbieri, C.
    Perdigues, J.
    Sodnik, Z.
    Kurtsiefer, C.
    Rarity, J. G.
    Zeilinger, A.
    Weinfurter, H.
    [J]. 2008 CONFERENCE ON OPTICAL FIBER COMMUNICATION/NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, VOLS 1-8, 2008, : 2765 - 2767
  • [28] Optical Components and System for Free-Space Quantum Key Distribution
    Youn, Chun Ju
    Ko, Haesin
    Choi, Byung-Seok
    Choe, Joong-Seon
    Kim, Kap-Joong
    Kim, Jong-Hoi
    Back, Yongsoon
    [J]. 23RD OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC2018), 2018,
  • [29] Scintillation discriminator improves free-space quantum key distribution
    唐峰
    朱冰
    [J]. Chinese Optics Letters, 2013, 11 (09) : 1 - 4
  • [30] FREE-SPACE QUANTUM-KEY DISTRIBUTION WITH POLARIZATION COMPENSATION
    Zhang, Guangyu
    Song, Siyu
    Li, Junlin
    Wang, Wanying
    Wang, Chuan
    [J]. JOURNAL OF RUSSIAN LASER RESEARCH, 2011, 32 (06) : 579 - 583