Critical exponents from the two-particle irreducible 1/N expansion

被引:3
|
作者
Saito, Yohei [1 ]
Fujii, Hirotsugu [2 ]
Itakura, Kazunori [3 ,4 ]
Morimatsu, Osamu [1 ,3 ,4 ]
机构
[1] Univ Tokyo, Dept Phys, Fac Sci, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Tokyo, Inst Phys, Tokyo 1538902, Japan
[3] High Energy Accelerator Res Org KEK, KEK Theory Ctr, IPNS, Tsukuba, Ibaraki 3050801, Japan
[4] Grad Univ Adv Studies SOKENDAI, Dept Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan
来源
PHYSICAL REVIEW D | 2012年 / 85卷 / 06期
关键词
1-N EXPANSION; RENORMALIZATION-GROUP; ORDER; 1-N2;
D O I
10.1103/PhysRevD.85.065019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We calculate the critical exponent nu of the O(N) symmetric phi(4) model within the 1/N expansion of the two-particle-irreducible effective action, which provides us with a self-consistent approximation scheme for the correlation function. The exponent nu controls the behavior of a two-point function <phi phi > near the critical point T not equal T-c through the correlation length xi similar to vertical bar T - Tc vertical bar(-nu), but we notice that it appears also in the scaling form of the three-point vertex function Gamma (2,1) similar to <phi phi phi(2)> at the critical point T Tc; in the momentum space, Gamma((2,1)) -kappa(2-eta-1/nu). We derive a self-consistent equation for Gamma((2,1)) from the two-particle-irreducible effective action including the skeleton diagrams up to the next-leading-order in the 1/N expansion, and solve it to the leading-log accuracy (i.e., keeping the leading lnk terms) to obtain nu. Our results turn out to improve those obtained in the standard one-particle-irreducible calculation at the next-leading-order.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Analytical investigation of singularities in two-particle irreducible vertex functions of the Hubbard atom
    Thunstroem, P.
    Gunnarsson, O.
    Ciuchi, Sergio
    Rohringer, G.
    PHYSICAL REVIEW B, 2018, 98 (23)
  • [22] Two-particle irreducible functional renormalization group schemes-a comparative study
    Rentrop, J. F.
    Jakobs, S. G.
    Meden, V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (14)
  • [23] Analogy between real irreducible tensor operator and molecular two-particle operator
    Shi-Jun Zhong
    Yin-Gui Wang
    Qian-Er Zhang
    Theoretical Chemistry Accounts, 1997, 96 : 135 - 139
  • [24] Critical exponents in two dimensions and pseudo-ε expansion
    Nikitina, M. A.
    Sokolov, A. I.
    PHYSICAL REVIEW E, 2014, 89 (04):
  • [25] N-Body Efimov States from Two-Particle Noise
    Nicholson, Amy N.
    PHYSICAL REVIEW LETTERS, 2012, 109 (07)
  • [26] Nonequilibrium quantum spin dynamics from two-particle irreducible functional integral techniques in the Schwinger boson representation
    Schuckert, A.
    Orioli, A. Pineiro
    Berges, J.
    PHYSICAL REVIEW B, 2018, 98 (22)
  • [27] Work recoverable from two-particle information
    Levitin, Lev B.
    Toffoli, Tommaso
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC): THE TENTH INTERNATIONAL CONFERENCE, 2011, 1363
  • [28] Work recoverable from two-particle information
    Levitin, Lev B.
    Toffoli, Tommaso
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [29] Plasmonic interferences of two-particle N00N states
    Vest, Benjamin
    Shlesingeri, Ilan
    Dheur, Marie-Christine
    Devaux, Eloise
    Greffet, Jean-Jacques
    Messing, Gaetan
    Marquier, Francois
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [30] ACCURATE CRITICAL EXPONENTS FROM THE EPSILON-EXPANSION
    LEGUILLOU, JC
    ZINNJUSTIN, J
    JOURNAL DE PHYSIQUE LETTRES, 1985, 46 (04): : L137 - L141