Annealing effect on the microstructure and morphology of the nanostructured Ta-Si-N thin films

被引:0
|
作者
Chung, C. K. [1 ]
Chen, T. S. [1 ,2 ]
Peng, C. C. [1 ]
Wu, B. H. [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Mech Engn, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Ctr Micro Nano Sci & Technol, Tainan 701, Taiwan
关键词
Ta-Si-N; nanostructure; annealing; morphology;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ta-Si-N thin films were potentially applied as diffusion barriers for Cu interconnections. However, the thermal stability of Ta-Si-N is related to the composition and annealing methods. In this paper, we have investigated the effect of high-vacuum furnace annealing and vacuum rapid thermal annealing (RTA) on the microstructure and morphology of different nanostructured Ta-Si-N thin films fabricated by reactive cosputtering at varied Ta and Si powers and nitrogen flow ratio (FN2%= FN2/(FN2+FAr) x 100%). As Si is added to the Ta-N compound to form Ta-Si-N, the microstructure becomes nanocrystalline grains embedded in an amorphous matrix i.e. amorphous-like microstructure, which is also affected by the nitrogen flow ratio. Amorphous-like Ta-Si-N films obtained at small 3-6 FN2% had smoother morphology and lower resistivity compared to the polycrystalline film at high 20 FN2%. The thermal stability of Ta-Si-N films increases with the Si/Ta ratio and magnitude of vacuum. Higher vacuum furnace annealing at 5 x 10(-5) Torr may make both amorphous-like and polycrystalline Ta-Si-N films enduring higher temperature up to 900 degrees C for a longer time of 1 h while the higher pressure RTA at 2 x 10,2 Torr make Ta-Si-N films transform of phase and morphology at 750900 degrees C just in 1 min. The increase of Si/Ta ratio may also increases the stability of Ta-Si-N films.
引用
收藏
页码:984 / +
页数:2
相关论文
共 50 条
  • [21] Effect of microstructures on the electrical and optoelectronic properties of nanocrystalline Ta-Si-N thin films by reactive magnetron cosputtering
    Chung, C. K.
    Chen, T. S.
    SCRIPTA MATERIALIA, 2007, 57 (07) : 611 - 614
  • [22] Effect of composition on thermal stability and electrical resistivity of Ta-Si-N films
    Olowolafe, JO
    Rau, I
    Unruh, KM
    Swann, CP
    Jawad, ZS
    Alford, T
    THIN SOLID FILMS, 2000, 365 (01) : 19 - 21
  • [23] Effect of the target shuttering on the characteristics of the Ta-Si-N thin films by reactive magnetron co-sputtering
    Chung, C. K.
    Chen, T. S.
    Nautiyal, A.
    Chang, N. W.
    Hung, S. T.
    SURFACE & COATINGS TECHNOLOGY, 2009, 204 (6-7): : 1071 - 1075
  • [24] EFFECT OF N CONTENT ON THE THERMAL STABILITY OF Ta-Si-N THIN FILM BARRIER LAYER
    Zhou, Jicheng
    Liu, Zheng
    Zheng, Xuqiang
    Li, Youzhen
    Luo, Ditian
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (30): : 5867 - 5875
  • [25] Electrical and optical properties of Ta-Si-N thin films deposited by reactive magnetron sputtering
    Oezer, D.
    Ramirez, G.
    Rodil, S. E.
    Sanjines, R.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (11)
  • [26] Thermal stability of thin amorphous Ta-Si-N films used in Au/GaN metallization
    A. V. Kuchuk
    V. P. Klad’ko
    V. F. Machulin
    A. Piotrowska
    Technical Physics, 2006, 51 : 1383 - 1385
  • [27] Thermal stability of Ta-Si-N nanocomposite thin films at different nitrogen flow ratios
    Chung, C. K.
    Chen, T. S.
    Peng, C. C.
    Wu, B. H.
    SURFACE & COATINGS TECHNOLOGY, 2006, 201 (07): : 3947 - 3952
  • [28] Thermal stability of thin amorphous Ta-Si-N films used in Au/GaN metallization
    Kuchuk, A. V.
    Klad'ko, V. P.
    Machulin, V. F.
    Piotrowska, A.
    TECHNICAL PHYSICS, 2006, 51 (10) : 1383 - 1385
  • [29] Optimization of Ta-Si-N thin films for use as oxidation-resistant diffusion barriers
    Cabral, C
    Saenger, KL
    Kotecki, DE
    Harper, JME
    JOURNAL OF MATERIALS RESEARCH, 2000, 15 (01) : 194 - 198
  • [30] Investigation of high performance Ta-Si-N/Cu/Ta-Si-N metallization system for SAW devices
    Pekarcíková, M
    Menzel, S
    Reitz, D
    Schmidt, H
    Wetzig, K
    MICROELECTRONIC ENGINEERING, 2005, 82 (3-4) : 607 - 612