共 50 条
Anisotropic magnetoresistance in electrodeposited cobalt antidot arrays
被引:14
|作者:
Spada, E. R.
[1
]
Pereira, G. M. C.
[1
]
Jasinski, E. F.
[1
]
da Rocha, A. S.
[1
]
Schilling, O. F.
[1
]
Sartorelli, M. L.
[1
]
机构:
[1] Univ Fed Santa Catarina, CFM, Dept Fis, LabSiN, BR-88040900 Florianopolis, SC, Brazil
关键词:
nanosphere lithography;
electrodeposition;
antidot structure;
anisotropic magnetoresistance;
D O I:
10.1016/j.jmmm.2008.02.057
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Nanosphere lithography is a simple and accessible technique for nanostructuring of materials. Combined with electrodeposition, it allows the production of compact, ordered antidot networks. In contrast to other lithographic techniques, the resulting nanostructure shows periodicity also along the growth axis. Interesting results are expected for the magnetoresistive behavior of such structures as function of thickness, due to the confinement of electronic routes and the strong shape anisotropy. We were able to electrodeposit cobalt antidot structures of homogeneous and controlled thickness directly over silicon substrates. Room temperature anisotropic magnetoresistance (AMR) as function of thickness and nanosphere diameter are presented, with the magnetic field applied in plane, transverse to the applied current. An overlap of two effects is observed. At fields lower than 2 kOe typical hysteretic AMR peaks appear around the coercive field, and tend to disappear for thicker films. At higher fields, a reversible contribution, caused by the forced magnetization that rotates the spin away from the local current direction, lowers the magnetoresistance, before it reaches its saturation value. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:E253 / E256
页数:4
相关论文