Anisotropic magnetoresistance in electrodeposited cobalt antidot arrays

被引:14
|
作者
Spada, E. R. [1 ]
Pereira, G. M. C. [1 ]
Jasinski, E. F. [1 ]
da Rocha, A. S. [1 ]
Schilling, O. F. [1 ]
Sartorelli, M. L. [1 ]
机构
[1] Univ Fed Santa Catarina, CFM, Dept Fis, LabSiN, BR-88040900 Florianopolis, SC, Brazil
关键词
nanosphere lithography; electrodeposition; antidot structure; anisotropic magnetoresistance;
D O I
10.1016/j.jmmm.2008.02.057
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanosphere lithography is a simple and accessible technique for nanostructuring of materials. Combined with electrodeposition, it allows the production of compact, ordered antidot networks. In contrast to other lithographic techniques, the resulting nanostructure shows periodicity also along the growth axis. Interesting results are expected for the magnetoresistive behavior of such structures as function of thickness, due to the confinement of electronic routes and the strong shape anisotropy. We were able to electrodeposit cobalt antidot structures of homogeneous and controlled thickness directly over silicon substrates. Room temperature anisotropic magnetoresistance (AMR) as function of thickness and nanosphere diameter are presented, with the magnetic field applied in plane, transverse to the applied current. An overlap of two effects is observed. At fields lower than 2 kOe typical hysteretic AMR peaks appear around the coercive field, and tend to disappear for thicker films. At higher fields, a reversible contribution, caused by the forced magnetization that rotates the spin away from the local current direction, lowers the magnetoresistance, before it reaches its saturation value. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:E253 / E256
页数:4
相关论文
共 50 条
  • [21] MAGNETOTRANSPORT IN ANTIDOT ARRAYS
    WEISS, D
    RICHTER, K
    VASILIADOU, E
    LUTJERING, G
    SURFACE SCIENCE, 1994, 305 (1-3) : 408 - 418
  • [22] Magnetoresistance of antidot lattices with grain boundaries
    Klinkhammer, S.
    Xu, Hengyi
    Heinzel, T.
    Gennser, U.
    Faini, G.
    Ulysse, C.
    Cavanna, A.
    PHYSICAL REVIEW B, 2008, 77 (23):
  • [23] Magnetoresistance anisotropy of a Bi antidot array
    Strijkers, GJ
    Yang, FY
    Reich, DH
    Chien, CL
    Searson, PC
    Strelniker, YM
    Bergman, DJ
    IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (04) : 2067 - 2069
  • [24] Tailoring the magnetic properties of cobalt antidot arrays by varying the pore size and degree of disorder
    Michea, S.
    Palma, J. L.
    Lavin, R.
    Briones, J.
    Escrig, J.
    Denardin, J. C.
    Rodriguez-Suarez, R. L.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (33)
  • [25] Cobalt antidot arrays on membranes: Fabrication and investigation with transmission X-ray microscopy
    Heyderman, L. J.
    Czekaj, S.
    Nolting, F.
    Kim, D.-H.
    Fischer, P.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 316 (02) : 99 - 102
  • [26] Multiband Ballistic Transport and Anisotropic Commensurability Magnetoresistance in Antidot Lattices of AB-stacked Trilayer Graphene
    Tajima, Shingo
    Ebisuoka, Ryoya
    Watanabe, Kenji
    Taniguchi, Takashi
    Yagi, Ryuta
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2020, 89 (04)
  • [27] Flux phases in superconducting antidot arrays: Influence of the antidot size
    Rosseel, E
    Metlushko, V
    VanBael, MJ
    Baert, M
    Puig, T
    Temst, K
    Moshchalkov, VV
    Bruynseraede, Y
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 885 - 886
  • [28] Quantum lifetimes in antidot arrays
    Yoo, KH
    Park, JW
    Kwon, HC
    Choi, JB
    PHYSICA B, 2000, 284 : 1910 - 1911
  • [29] Effect of antidot diameter on the dynamic response of nanoscale antidot arrays
    Ding, J.
    Tripathy, D.
    Adeyeye, A. O.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
  • [30] Anticyclotron motion in antidot arrays
    Hochgräfe, M
    Krahne, R
    Heyn, C
    Heitmann, D
    PHYSICAL REVIEW B, 1999, 60 (15): : 10680 - 10682