Anisotropic magnetoresistance in electrodeposited cobalt antidot arrays

被引:14
|
作者
Spada, E. R. [1 ]
Pereira, G. M. C. [1 ]
Jasinski, E. F. [1 ]
da Rocha, A. S. [1 ]
Schilling, O. F. [1 ]
Sartorelli, M. L. [1 ]
机构
[1] Univ Fed Santa Catarina, CFM, Dept Fis, LabSiN, BR-88040900 Florianopolis, SC, Brazil
关键词
nanosphere lithography; electrodeposition; antidot structure; anisotropic magnetoresistance;
D O I
10.1016/j.jmmm.2008.02.057
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanosphere lithography is a simple and accessible technique for nanostructuring of materials. Combined with electrodeposition, it allows the production of compact, ordered antidot networks. In contrast to other lithographic techniques, the resulting nanostructure shows periodicity also along the growth axis. Interesting results are expected for the magnetoresistive behavior of such structures as function of thickness, due to the confinement of electronic routes and the strong shape anisotropy. We were able to electrodeposit cobalt antidot structures of homogeneous and controlled thickness directly over silicon substrates. Room temperature anisotropic magnetoresistance (AMR) as function of thickness and nanosphere diameter are presented, with the magnetic field applied in plane, transverse to the applied current. An overlap of two effects is observed. At fields lower than 2 kOe typical hysteretic AMR peaks appear around the coercive field, and tend to disappear for thicker films. At higher fields, a reversible contribution, caused by the forced magnetization that rotates the spin away from the local current direction, lowers the magnetoresistance, before it reaches its saturation value. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:E253 / E256
页数:4
相关论文
共 50 条
  • [1] In-plane magnetoresistance and magnetization reversal of cobalt antidot arrays
    Meng, T. -J.
    Laloe, J. -B.
    Holmes, S. N.
    Husmann, A.
    Jones, G. A. C.
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (03)
  • [2] Anisotropic magnetoresistance of a classical antidot array
    Tornow, M
    Weiss, D
    vonKlitzing, K
    Eberl, K
    Bergman, DJ
    Strelniker, YM
    PHYSICAL REVIEW LETTERS, 1996, 77 (01) : 147 - 150
  • [3] Magnetoresistance behavior of nanoscale antidot arrays
    Wang, CC
    Adeyeye, AO
    Singh, N
    Huang, YS
    Wu, YH
    PHYSICAL REVIEW B, 2005, 72 (17)
  • [4] Probing the exchange bias in Co/CoO nanoscale antidot arrays using anisotropic magnetoresistance
    Tripathy, D.
    Adeyeye, A. O.
    PHYSICAL REVIEW B, 2009, 79 (06)
  • [5] Magnetization reversal in cobalt antidot arrays
    Heyderman, LJ
    Nolting, F
    Backes, D
    Czekaj, S
    Lopez-Diaz, L
    Kläui, M
    Rüdiger, U
    Vaz, CAF
    Bland, JAC
    Matelon, RJ
    Volkmann, UG
    Fischer, P
    PHYSICAL REVIEW B, 2006, 73 (21):
  • [6] Anomalous magnetoresistance behavior of bismuth antidot arrays.
    Rabin, O
    Dressethaus, MS
    CONTINUOUS NANOPHASE AND NANOSTRUCTURED MATERIALS, 2004, 788 : 55 - 60
  • [7] Antidot shape dependence of the commensurability oscillation of magnetoresistance in two-dimensional antidot arrays
    Azuma, T
    Osada, T
    PHYSICA B-CONDENSED MATTER, 1998, 256 : 397 - 400
  • [8] Magnetization reversal and anisotropic magnetoresistance behavior in bicomponent antidot nanostructures
    Tripathy, D.
    Vavassori, P.
    Porro, J. M.
    Adeyeye, A. O.
    Singh, N.
    APPLIED PHYSICS LETTERS, 2010, 97 (04)
  • [9] Suppression of magnetoresistance in PtSe2 microflakes with antidot arrays
    Li, Zhaoguo
    Zeng, Yong
    Zhou, Minjie
    Xie, Bo
    Zhang, Jicheng
    Wu, Weidong
    NANOTECHNOLOGY, 2018, 29 (40)
  • [10] Magnetic properties engineering of nanopatterned cobalt antidot arrays
    Kaidatzis, Andreas
    del Real, Rafael P.
    Alvaro, Raquel
    Luis Palma, Juan
    Anguita, Jose
    Niarchos, Dimitrios
    Vazquez, Manuel
    Escrig, Juan
    Miguel Garcia-Martin, Jose
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (17)