Disjointness of Mobius from asymptotically periodic functions

被引:0
|
作者
Wei, Fei [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
中国博士后科学基金;
关键词
Asymptotically periodic function; mean state; Mobius function; Sarnak's Mobius Disjointness Conjecture; MULTIPLICATIVE FUNCTIONS; ENTROPY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate Sarnak's Mobius Disjointness Conjecture through asymptotically periodic functions. It is shown that Sarnak's conjecture for rigid dynamical systems is equivalent to the disjointness of Mobius from asymptotically periodic functions. We give sufficient conditions and a partial answer to the later one. As an application, we show that Sarnak's conjecture holds for a class of rigid dynamical systems, which improves an earlier result of Kanigowski-Lemanczyk-Radziwill.
引用
收藏
页码:863 / 922
页数:60
相关论文
共 50 条
  • [31] Periodic Mobius sequences
    Johnson, Clive
    MATHEMATICAL GAZETTE, 2021, 105 (563): : 312 - 318
  • [32] Kadets type and Loomis type theorems for asymptotically almost periodic functions
    Ding, Hui-Sheng
    Jian, Wei-Gang
    Van Minh, Nguyen
    N'Guerekata, Gaston M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 373 : 389 - 410
  • [33] Asymptotically Weyl almost periodic functions in Lebesgue spaces with variable exponents
    Kostic, Marko
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 498 (01)
  • [34] Global Convergence on Asymptotically Almost Periodic SICNNs with Nonlinear Decay Functions
    Chuangxia Huang
    Bingwen Liu
    Xuemei Tian
    Luanshan Yang
    Xiaoxiao Zhang
    Neural Processing Letters, 2019, 49 : 625 - 641
  • [35] Global Convergence on Asymptotically Almost Periodic SICNNs with Nonlinear Decay Functions
    Huang, Chuangxia
    Liu, Bingwen
    Tian, Xuemei
    Yang, Luanshan
    Zhang, Xiaoxiao
    NEURAL PROCESSING LETTERS, 2019, 49 (02) : 625 - 641
  • [36] MOBIUS DISJOINTNESS FOR PRODUCT FLOWS OF RIGID DYNAMICAL SYSTEMS AND AFFINE LINEAR FLOWS
    Wei, Fei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (04) : 969 - 1007
  • [37] An Upper Bound Asymptotically Tight for the Connectivity of the Disjointness Graph of Segments in the Plane
    Espinoza-Valdez, Aurora
    Leanos, Jesus
    Ndjatchi, Christophe
    Rios-Castro, Luis Manuel
    SYMMETRY-BASEL, 2021, 13 (06):
  • [38] THE THEORY OF MOBIUS FUNCTIONS
    BARNABEI, M
    BRINI, A
    ROTA, GC
    RUSSIAN MATHEMATICAL SURVEYS, 1986, 41 (03) : 135 - 188
  • [39] Mobius functions of lattices
    Blass, A
    Sagan, BE
    ADVANCES IN MATHEMATICS, 1997, 127 (01) : 94 - 123
  • [40] Almost Periodic and Asymptotically Almost Periodic Type Functions in Lebesgue Spaces with Variable Exponents Lp(x)
    Diagana, Toka
    Kostic, Marko
    FILOMAT, 2020, 34 (05) : 1629 - 1644