Disjointness of Mobius from asymptotically periodic functions

被引:0
|
作者
Wei, Fei [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
中国博士后科学基金;
关键词
Asymptotically periodic function; mean state; Mobius function; Sarnak's Mobius Disjointness Conjecture; MULTIPLICATIVE FUNCTIONS; ENTROPY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate Sarnak's Mobius Disjointness Conjecture through asymptotically periodic functions. It is shown that Sarnak's conjecture for rigid dynamical systems is equivalent to the disjointness of Mobius from asymptotically periodic functions. We give sufficient conditions and a partial answer to the later one. As an application, we show that Sarnak's conjecture holds for a class of rigid dynamical systems, which improves an earlier result of Kanigowski-Lemanczyk-Radziwill.
引用
收藏
页码:863 / 922
页数:60
相关论文
共 50 条
  • [1] MOBIUS DISJOINTNESS FOR A CLASS OF EXPONENTIAL FUNCTIONS
    Gu, Weichen
    Wei, Fei
    QUARTERLY JOURNAL OF MATHEMATICS, 2022, 73 (04): : 1427 - 1468
  • [2] Disjointness of the Mobius Transformation and Mobius Function
    El Abdalaoui, El Houcein
    Shparlinski, Igor E.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2019, 6 (01)
  • [3] Rigidity in dynamics and Mobius disjointness
    Kanigowski, Adam
    Lemanczyk, Mariusz
    Radziwill, Maksym
    FUNDAMENTA MATHEMATICAE, 2021, 255 (03) : 309 - 336
  • [4] Measure complexity and Mobius disjointness
    Huang, Wen
    Wang, Zhiren
    Ye, Xiangdong
    ADVANCES IN MATHEMATICS, 2019, 347 : 827 - 858
  • [5] MOBIUS DISJOINTNESS FOR HOMOGENEOUS DYNAMICS
    Peckner, Ryan
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (14) : 2745 - 2792
  • [6] New contributions on asymptotically periodic functions and S-asymptotically omega periodic functions
    Ait Dads, E.
    Lhachimi, L.
    APPLICABLE ANALYSIS, 2022, : 2449 - 2465
  • [7] Mobius disjointness for analytic skew products
    Wang, Zhiren
    INVENTIONES MATHEMATICAE, 2017, 209 (01) : 175 - 196
  • [8] ASYMPTOTICALLY ALMOST PERIODIC FUNCTIONS IN PROBABILITY
    Yuliang Han
    Baifeng Liu
    Xidong Sun
    Xiliang Li
    Annals of Differential Equations, 2013, 29 (01) : 17 - 24
  • [9] Arbitrarily slow decay in the Mobius disjointness conjecture
    Algom, Amir
    Wang, Zhiren
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (09) : 2863 - 2880
  • [10] MOBIUS DISJOINTNESS FOR SKEW PRODUCTS ON THE HEISENBERG NILMANIFOLD
    Litman, Matthew
    Wang, Zhiren
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (05) : 2033 - 2043