On the construction of an integrable solution to one class of nonlinear integral equations of Hammerstein-Nemytskii type on the whole axis

被引:4
|
作者
Khachatryan, Kh A. [1 ,2 ]
Petrosyan, H. S. [2 ,3 ]
机构
[1] Natl Acad Sci Armenia, Inst Math, Phys Math Sci, Yerevan 0019, Armenia
[2] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow 119991, Russia
[3] Armenian Natl Agr Univ, Yerevan 0009, Armenia
来源
基金
俄罗斯科学基金会;
关键词
Hammerstein-Nemytskii equations; successive approximations; monotonicity; convexity; convergence of iterations; SOLUBILITY;
D O I
10.21538/0134-4889-2020-26-2-278-287
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study one class of nonlinear integral equations of convolution type with the Hammerstein-Nemytskii operator on the whole axis. This class has direct applications in the kinetic theory of gases, the theory of p-adic open-closed strings, and the theory of radiative transfer. We prove a constructive theorem on the existence of a nontrivial nonnegative solution integrable on the whole axis. In the end of the paper, we give specific examples of such equations satisfying all conditions of the main theorem.
引用
收藏
页码:278 / 287
页数:10
相关论文
共 50 条