Multi-variate stochastic volatility modelling using Wishart autoregressive processes

被引:6
|
作者
Triantafyllopoulos, K. [1 ]
机构
[1] Univ Sheffield, Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
关键词
Multi-variate volatility; Wishart process; financial time series; covariance; Bayesian forecasting; SINGULAR MULTIVARIATE BETA; PORTFOLIO SELECTION;
D O I
10.1111/j.1467-9892.2011.00738.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new multi-variate stochastic volatility estimation procedure for financial time series is proposed. A Wishart autoregressive process is considered for the volatility precision covariance matrix, for the estimation of which a two step procedure is adopted. The first step is the conditional inference on the autoregressive parameters and the second step is the unconditional inference, based on a Newton-Raphson iterative algorithm. The proposed methodology, which is mostly Bayesian, is suitable for medium dimensional data and it bridges the gap between closed-form estimation and simulation-based estimation algorithms. An example, consisting of foreign exchange rates data, illustrates the proposed methodology.
引用
下载
收藏
页码:48 / 60
页数:13
相关论文
共 50 条
  • [41] Multi-Variate vocal data analysis for Detection of Parkinson disease using Deep Learning
    Nagasubramanian, Gayathri
    Sankayya, Muthuramalingam
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10): : 4849 - 4864
  • [42] Classification of Multi-variate Varying Length Time Series Using Descriptive Statistical Features
    Chandrakala, S.
    Sekhar, C. Chandra
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 13 - 18
  • [43] Classification of functional brain images using a GMM-based multi-variate approach
    Segovia, F.
    Gorriz, J. M.
    Ramirez, J.
    Salas-Gonzalez, D.
    Alvarez, I.
    Lopez, M.
    Chaves, R.
    Padilla, P.
    NEUROSCIENCE LETTERS, 2010, 474 (01) : 58 - 62
  • [44] Measurements of cadmium in soil extracts using multi-variate data analysis and electrochemical sensors
    Winquist, Fredrik
    Krantz-Rulcker, Christina
    Olsson, Thomas
    Jonsson, Anders
    PRECISION AGRICULTURE, 2009, 10 (03) : 231 - 246
  • [45] Uni-Variate and Multi-Variate Short-Term Household Electricity Consumption Prediction Using Machine Learning Technique
    Tyagi S.
    Singh P.
    Recent Advances in Computer Science and Communications, 2022, 15 (06) : 890 - 900
  • [46] Real-Time Head Pose Estimation Using Multi-variate RVM on Faces in the Wild
    Selim, Mohamed
    Pagani, Alain
    Stricker, Didier
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 254 - 265
  • [47] Spatial and Temporal Normalization for Multi-Variate Time Series Prediction Using Machine Learning Algorithms
    Providence, Alimasi Mongo
    Yang, Chaoyu
    Orphe, Tshinkobo Bukasa
    Mabaire, Anesu
    Agordzo, George K.
    ELECTRONICS, 2022, 11 (19)
  • [48] Retrieval of tea polyphenol at leaf level using spectral transformation and multi-variate statistical approach
    Dutta, Dibyendu
    Das, Prabir Kumar
    Bhunia, Uttam Kumar
    Singh, Upasana
    Singh, Shalini
    Sharma, Jaswant Raj
    Dadhwal, Vinay Kumar
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 36 : 22 - 29
  • [49] Semiparametric stochastic volatility modelling using penalized splines
    Roland Langrock
    Théo Michelot
    Alexander Sohn
    Thomas Kneib
    Computational Statistics, 2015, 30 : 517 - 537
  • [50] Semiparametric stochastic volatility modelling using penalized splines
    Langrock, Roland
    Michelot, Theo
    Sohn, Alexander
    Kneib, Thomas
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 517 - 537