Data Augmentation for Graph Convolutional Network on Semi-supervised Classification

被引:6
|
作者
Tang, Zhengzheng [1 ,2 ]
Qiao, Ziyue [1 ,2 ]
Hong, Xuehai [1 ,3 ]
Wang, Yang [2 ]
Dharejo, Fayaz Ali [1 ,2 ]
Zhou, Yuanchun [2 ]
Du, Yi [2 ]
机构
[1] Chinese Acad Sci, Comp Network Informat Ctr, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
来源
基金
北京市自然科学基金;
关键词
Data augmentation; Graph Convolutional Network; Semi-supervised classification;
D O I
10.1007/978-3-030-85899-5_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data augmentation aims to generate new and synthetic features from the original data, which can identify a better representation of data and improve the performance and generalizability of downstream tasks. However, data augmentation for graph-based models remains a challenging problem, as graph data is more complex than traditional data, which consists of two features with different properties: graph topology and node attributes. In this paper, we study the problem of graph data augmentation for Graph Convolutional Network (GCN) in the context of improving the node embeddings for semi-supervised node classification. Specifically, we conduct cosine similarity based cross operation on the original features to create new graph features, including new node attributes and new graph topologies, and we combine them as new pairwise inputs for specific GCNs. Then, we propose an attentional integrating model to weighted sum the hidden node embeddings encoded by these GCNs into the final node embeddings. We also conduct a disparity constraint on these hidden node embeddings when training to ensure that non-redundant information is captured from different features. Experimental results on five real-world datasets show that our method improves the classification accuracy with a clear margin (+2.5%-+84.2%) than the original GCN model.
引用
收藏
页码:33 / 48
页数:16
相关论文
共 50 条
  • [31] Heterogeneous graph contrastive learning with adaptive data augmentation for semi-supervised short text classification
    Wu, Mingqiang
    Xu, Zhuoming
    Zheng, Lei
    EXPERT SYSTEMS, 2025, 42 (02)
  • [32] Information-controlled graph convolutional network for multi-view semi-supervised classification
    Shi, Yongquan
    Pi, Yueyang
    Liu, Zhanghui
    Zhao, Hong
    Wang, Shiping
    NEURAL NETWORKS, 2025, 184
  • [33] A Temporal Ensembling Based Semi-Supervised Graph Convolutional Network for Power Quality Disturbances Classification
    Cai, Jiajun
    Wang, Huaizhi
    Jiang, Hui
    IEEE ACCESS, 2024, 12 : 75249 - 75261
  • [34] Semi-Supervised Classification of Graph Convolutional Networks with Laplacian Rank Constraints
    Haiqi Zhang
    Guangquan Lu
    Mengmeng Zhan
    Beixian Zhang
    Neural Processing Letters, 2022, 54 : 2645 - 2656
  • [35] Semi-supervised classification by graph p-Laplacian convolutional networks
    Fu, Sichao
    Liu, Weifeng
    Zhang, Kai
    Zhou, Yicong
    Tao, Dapeng
    INFORMATION SCIENCES, 2021, 560 : 92 - 106
  • [36] Example-feature graph convolutional networks for semi-supervised classification
    Fu, Sichao
    Liu, Weifeng
    Zhang, Kai
    Zhou, Yicong
    NEUROCOMPUTING, 2021, 461 : 63 - 76
  • [37] Semi-Supervised Classification of Graph Convolutional Networks with Laplacian Rank Constraints
    Zhang, Haiqi
    Lu, Guangquan
    Zhan, Mengmeng
    Zhang, Beixian
    NEURAL PROCESSING LETTERS, 2022, 54 (04) : 2645 - 2656
  • [38] Fully Linear Graph Convolutional Networks for Semi-Supervised and Unsupervised Classification
    Cai, Yaoming
    Zhang, Zijia
    Ghamisi, Pedram
    Cai, Zhihua
    Liu, Xiaobo
    Ding, Yao
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (03)
  • [39] Two-order graph convolutional networks for semi-supervised classification
    Fu Sichao
    Liu Weifeng
    Li Shuying
    Zhou Yicong
    IET IMAGE PROCESSING, 2019, 13 (14) : 2763 - 2771
  • [40] High-order graph convolutional networks for semi-supervised classification
    Yu, Yongbo
    Sun, Kin
    Dong, Junyu
    Yu, Hui
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 717 - 724