Complex coupled-mode theory for tapered optical waveguides

被引:13
|
作者
Mu, Jianwei [1 ]
Huang, Wei-Ping [1 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4K1, Canada
关键词
DESIGN; DEVICES;
D O I
10.1364/OL.36.001026
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A coupled-mode formulation based on complex local modes is developed for tapered and longitudinally varying optical waveguides. Different from the conventional coupled-mode theory that requires integration over the entire spectrum of radiation modes, the new formulation treats the radiation fields via discrete complex modes similarly to the guided modes. Accuracy, convergence, and scope of validity for the solutions of the complex coupled-mode equations are investigated in detail for a typical single-mode waveguide taper. It is demonstrated that the complex coupled-mode theory has overcome the difficulties of the conventional theory in simulation of radiation field effects while preserving the simplicity and intuitiveness of this popular method. (C) 2011 Optical Society of America
引用
收藏
页码:1026 / 1028
页数:3
相关论文
共 50 条
  • [31] Temporal coupled-mode theory for the Fano resonance in optical resonators
    Fan, SH
    Suh, W
    Joannopoulos, JD
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2003, 20 (03) : 569 - 572
  • [32] COUPLED-MODE THEORY FOR CORRUGATED OPTICAL WAVE-GUIDES
    HALL, DG
    [J]. OPTICS LETTERS, 1990, 15 (11) : 619 - 621
  • [33] Coupled-mode theory of field enhancement in complex metal nanostructures
    Sun, Greg
    Khurgin, Jacob B.
    Bratkovsky, Alexander
    [J]. PHYSICAL REVIEW B, 2011, 84 (04)
  • [34] COUPLED-MODE THEORY OF RAMAN AMPLIFICATION IN LOSSLESS OPTICAL FIBERS
    CAPASSO, F
    DIPORTO, P
    [J]. JOURNAL OF APPLIED PHYSICS, 1976, 47 (04) : 1472 - 1476
  • [35] Chiral Optical Tamm States: Temporal Coupled-Mode Theory
    Timofeev, Ivan V.
    Pankin, Pavel S.
    Vetrov, Stepan Ya.
    Arkhipkin, Vasily G.
    Lee, Wei
    Zyryanov, Victor Ya.
    [J]. CRYSTALS, 2017, 7 (04):
  • [36] Analysis of compound coupled-resonator optical waveguide by coupled-mode theory
    Han, Wenbo
    Zhou, Jianhong
    Song, Hongfei
    Meng, Ying
    Yang, Jinhua
    [J]. OPTIK, 2015, 126 (11-12): : 1114 - 1116
  • [37] General Synthesis of Tapered Matching Sections for Single-Mode Operation Using the Coupled-Mode Theory
    Percaz, Jon M.
    Arnedo, Israel
    Arregui, Ivan
    Teberio, Fernando
    Martin-Iglesias, Petronilo
    Laso, Miguel A. G.
    Lopetegi, Txema
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2019, 67 (09) : 3511 - 3526
  • [38] Coupled-mode equations for pulse switching in parallel waveguides
    Chiang, KS
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1997, 33 (06) : 950 - 954
  • [39] EQUIVALENCE OF COUPLED-MODE AND FLOQUET-BLOCH FORMALISMS IN PERIODIC OPTICAL-WAVEGUIDES
    YARIV, A
    GOVER, A
    [J]. APPLIED PHYSICS LETTERS, 1975, 26 (09) : 537 - 539
  • [40] Numerically-assisted coupled-mode theory for silicon waveguide couplers and arrayed waveguides
    Cooper, Michael L.
    Mookherjea, Shayan
    [J]. OPTICS EXPRESS, 2009, 17 (03): : 1583 - 1599