Semisimple and G-Equivariant Simple Algebras Over Operads

被引:1
|
作者
Etingof, Pavel [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Simple algebra; Semisimple algebra; Operad; Equivariant;
D O I
10.1007/s10485-016-9435-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. There is a standard theorem on the classification of G-equivariant finite dimensional simple commutative, associative, and Lie algebras (i. e., simple algebras of these types in the category of representations of G). Namely, such an algebra is of the form A = FunH (G, B), where H is a subgroup of G, and B is a simple algebra of the corresponding type with an H-action. We explain that such a result holds in the generality of algebras over a linear operad. This allows one to extend Theorem 5.5 of Sciarappa (arXiv: 1506.07565) on the classification of simple commutative algebras in the Deligne category Rep(St) to algebras over any finitely generated linear operad.
引用
收藏
页码:965 / 969
页数:5
相关论文
共 50 条