Let G be a finite group. There is a standard theorem on the classification of G-equivariant finite dimensional simple commutative, associative, and Lie algebras (i. e., simple algebras of these types in the category of representations of G). Namely, such an algebra is of the form A = FunH (G, B), where H is a subgroup of G, and B is a simple algebra of the corresponding type with an H-action. We explain that such a result holds in the generality of algebras over a linear operad. This allows one to extend Theorem 5.5 of Sciarappa (arXiv: 1506.07565) on the classification of simple commutative algebras in the Deligne category Rep(St) to algebras over any finitely generated linear operad.
机构:
Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
Melani, Valerio
Rubio, Marcel
论文数: 0引用数: 0
h-index: 0
机构:
Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, BelgiumUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy