The thermal behaviour of a sol-gel prepared hybride silica gel (HSiO sample) in the 20-1000 degrees C interval was studied by coupled thermogravimetric-mass spectrometric (TG-MS) analyses carried out at various heating rates. Thermogravimetric curve elaboration allowed the determination of the flex temperatures, corresponding to the maximum release rate of gas-evolved compounds, and to calculate the activation energy of the overall process. The mass spectrometric data, registered in the TG-MS measurements, were treated to discriminate the single reactions accounting for the release of each compound, among which water, dihydrofuran and various silane-and siloxane-derived species. These results were used to calculate the comprehensive activation energy and also those of each of the released species. Different methods of data processing were used to achieve better reliability of calculated activation energies. The discussion focuses on the high extension of kinetic information arising from MS data processing and on the advantage of identifying the contribution of single reactions, although they occur simultaneously during the heating process. In this respect, good agreement was found between the activation energies of the overall process calculated by separately processing TG and MS data. By processing MS data, the same agreement was observed in the comparison between the activation energy calculated for the overall thermal process and in the sum of the weighed activation energies of the reaction of each released compound.