Hollow Bio-derived Polymer Nanospheres with Ordered Mesopores for Sodium-Ion Battery

被引:24
|
作者
Ai, Yan [1 ,2 ]
You, Yuxiu [3 ]
Wei, Facai [1 ,2 ]
Jiang, Xiaolin [1 ,2 ]
Han, Zhuolei [1 ,2 ]
Cui, Jing [1 ,2 ]
Luo, Hao [1 ,2 ]
Li, Yucen [1 ,2 ]
Xu, Zhixin [4 ]
Xu, Shunqi [5 ,6 ]
Yang, Jun [4 ]
Bao, Qinye [1 ,2 ]
Jing, Chengbin [1 ,2 ]
Fu, Jianwei [7 ]
Cheng, Jiangong [8 ]
Liu, Shaohua [1 ,2 ]
机构
[1] East China Normal Univ, Sch Phys & Elect Sci, State Key Lab Precis Spect, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Sch Phys & Elect Sci, Dept Mat, Shanghai 200241, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[5] Tech Univ Dresden, Ctr Adv Elect Dresden Cfaed, D-01062 Dresden, Germany
[6] Tech Univ Dresden, Dept Chem & Food Chem, D-01062 Dresden, Germany
[7] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450052, Peoples R China
[8] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Transducer Technol, Shanghai 200050, Peoples R China
关键词
Self-assembly; Biomimetic synthesis; Mesoporous polymer; Ferric phytate; Sodium-ion battery; METAL-ORGANIC FRAMEWORKS; POROUS MATERIALS; ACID; CATALYST; SYSTEMS; HYBRID;
D O I
10.1007/s40820-020-0370-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bio-inspired hierarchical self-assembly provides elegant and powerful bottom-up strategies for the creation of complex materials. However, the current self-assembly approaches for natural bio-compounds often result in materials with limited diversity and complexity in architecture as well as microstructure. Here, we develop a novel coordination polymerization-driven hierarchical assembly of micelle strategy, using phytic acid-based natural compounds as an example, for the spatially controlled fabrication of metal coordination bio-derived polymers. The resultant ferric phytate polymer nanospheres feature hollow architecture, ordered meso-channels of similar to 12 nm, high surface area of 401 m(2) g-(1,) and large pore volume of 0.53 cm(3) g(-1). As an advanced anode material, this bio-derivative polymer delivers a remarkable reversible capacity of 540 mAh g(-1) at 50 mA g(-1), good rate capability, and cycling stability for sodium-ion batteries. This study holds great potential of the design of new complex bio-materials with supramolecular chemistry.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Ni-polymer gels-derived hollow NiSb alloy confined in 3D interconnected carbon as superior sodium-ion battery anode
    Lin, Zhihua
    Wang, Guanhua
    Xiong, Xunhui
    Zheng, Jie
    Ou, Xing
    Yang, Chenghao
    ELECTROCHIMICA ACTA, 2018, 269 : 225 - 231
  • [22] Hierarchical hollow-structured anode for high-rate sodium-ion battery
    Wu, Chuanqiang
    Zhou, Yu
    Wang, Changda
    Zhu, Wen
    Ding, Shiqing
    Chen, Shuangming
    Song, Li
    JOURNAL OF SOLID STATE CHEMISTRY, 2020, 283
  • [23] Hollow sphere of heterojunction (NiCu)S/NC as advanced anode for sodium-ion battery
    Chen, Hongyi
    Lv, Pengfei
    Tian, Pengfu
    Cao, Shiyue
    Yuan, Shengjun
    Liu, Qiming
    JOURNAL OF ENERGY CHEMISTRY, 2023, 82 : 248 - 258
  • [24] Nitrogen-Doped Hollow Carbon Nanospheres Derived from Dopamine as High-Performance Anode Materials for Sodium-Ion Batteries
    Yang, Yurong
    Qiu, Min
    Liu, Li
    Su, Dan
    Pi, Yanmei
    Yan, Guomin
    NANO, 2016, 11 (11)
  • [25] Hollow sphere of heterojunction (NiCu)S/NC as advanced anode for sodium-ion battery
    Hongyi Chen
    Pengfei Lv
    Pengfu Tian
    Shiyue Cao
    Shengjun Yuan
    Qiming Liu
    Journal of Energy Chemistry, 2023, 82 (07) : 248 - 258
  • [26] Microporous Organic Ladder Polymer with Vertically Aligned Quinones for Sodium-Ion Battery
    Sarkar, Suprabhat
    Dutta, Tapas Kumar
    Jana, Krishnendu
    Mandal, Balaji Prasad
    Patra, Abhijit
    SMALL, 2024,
  • [27] Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries
    Tang, Xiao
    Liu, Hao
    Su, Dawei
    Notten, Peter H. L.
    Wang, Guoxiu
    NANO RESEARCH, 2018, 11 (08) : 3979 - 3990
  • [28] Mixed Sodium Titanate as an Anode for Sodium-Ion Battery
    Cech, O.
    Vanysek, P.
    Chladil, L.
    Castkova, K.
    17TH INTERNATIONAL CONFERENCE ON ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 2016), 2016, 74 (01): : 331 - 337
  • [29] Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries
    Xiao Tang
    Hao Liu
    Dawei Su
    Peter H. L. Notten
    Guoxiu Wang
    Nano Research, 2018, 11 : 3979 - 3990
  • [30] Biomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors
    Zhu, Jianhui
    Roscow, James
    Chandrasekaran, Sundaram
    Deng, Libo
    Zhang, Peixin
    He, Tingshu
    Wang, Kuo
    Huang, Licong
    CHEMSUSCHEM, 2020, 13 (06) : 1275 - 1295