Preparation of conductive Cu1.5Mn1.5O4 and Mn3O4 spinet mixture powders as positive active materials in rechargeable Mg batteries operative at room temperature

被引:2
|
作者
Takemitsu, Hayato [1 ]
Hayashi, Yoshihiro [1 ]
Watanabe, Hiroto [1 ]
Mandai, Toshihiko [2 ]
Yagi, Shunsuke [3 ]
Oaki, Yuya [1 ]
Imai, Hiroaki [1 ]
机构
[1] Keio Univ, Fac Sci & Technol, Dept Appl Chem, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
[2] Natl Inst Mat Sci NIMS, Ctr Adv Battery Collaborat, Ctr Green Res Energy & Environm Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
关键词
Metal negative electrode battery; Positive electrode material; Complex polymerization; Propylene oxide; CATHODE MATERIALS; ELECTRICAL-PROPERTIES; CATALYTIC COMBUSTION; MANGANESE OXIDE; METAL ANODES; MAGNESIUM; ELECTROLYTES; DEPOSITION; CO; INTERCALATION;
D O I
10.1007/s10971-022-05891-0
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We prepared conductive mixtures of Cu1.5Mn1.5O4 and Mn3O4 spinels (CMO-MOs) as positive electrode active materials in rechargeable Mg batteries (RMBs) using a sol-gel complex polymerization method. The CMO-MO spinel mixtures with high specific surface areas above 100 m(2) g(-1) were obtained with mild calcination in Ar at 300 degrees C. The conductivity of CMO-MOs was estimated to be approximately 1000 times higher than that of a conventional MgMn2O4 (MMO) spinel powder. The discharge capacities evaluated using 2032-type coin-cell battery with a Mg-alloy negative electrode at room temperature increase with an increase in the specific surface area of the spinel powders. The specific surface area for providing the theoretical capacity of the conductive CMO-MOs was about one-third that of the insulative MMO. High specific surface area and high conductivity are key parameters for the positive active material to realize practical room-temperature operation of RMBs. [GRAPHICS] .
引用
收藏
页码:635 / 646
页数:12
相关论文
共 50 条
  • [21] A Room Temperature Synthetic Route to Mn3O4 Nanoplates
    Song, Rui
    Yuan, Hongming
    Chen, Yan
    Feng, Shouhua
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (03) : 2533 - 2536
  • [22] Aqueous chemical solution deposition of spinel Cu1.5Mn1.5O4 single layer films for solar selective absorber
    Ma, Pengjun
    Geng, Qingfen
    Gao, Xianghu
    Yang, Shengrong
    Liu, Gang
    RSC ADVANCES, 2016, 6 (60): : 54820 - 54829
  • [23] Room-temperature synthesis of Mn3O4 nanorods
    Vázquez-Olmos, A
    Redón, R
    Fernández-Osorio, AL
    Saniger, JM
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 81 (06): : 1131 - 1134
  • [24] Influence of Defects on Activity-Stability of Cu1.5Mn1.5O4 for Acid-Mediated Oxygen Evolution Reaction
    Ghadge, Shrinath Dattatray
    Datta, Moni K.
    Velikokhatnyi, Oleg, I
    Kuruba, Ramalinga
    Shanthi, Pavithra M.
    Kumta, Prashant N.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (14)
  • [25] Aqueous solution-chemical derived spinel Cu1.5Mn1.5O4 thin film for solar absorber application
    Ma, Pengjun
    Geng, Qingfen
    Gao, Xianghu
    Yang, Shengrong
    Liu, Gang
    MATERIALS LETTERS, 2016, 179 : 170 - 174
  • [26] Mn3O4合成锂离子电池正极材料LiNi0.5Mn1.5O4
    李士霞
    韦华
    吕小艳
    文衍宣
    粟海锋
    王凡
    电源技术, 2010, 34 (02) : 117 - 121
  • [27] On the Composition of LiNi0.5Mn1.5O4 Cathode Active Materials
    Stueble, Pirmin
    Mereacre, Valeriu
    Gesswein, Holger
    Binder, Joachim R.
    ADVANCED ENERGY MATERIALS, 2023, 13 (10)
  • [28] Preparation of LiNi0.5Mn1.5O4 cathode materials by electrospinning
    Zhong, Shengkui
    Hu, Piao
    Luo, Xia
    Zhang, Xiaoping
    Wu, Ling
    IONICS, 2016, 22 (11) : 2037 - 2044
  • [29] Preparation of LiNi0.5Mn1.5O4 cathode materials by electrospinning
    Shengkui Zhong
    Piao Hu
    Xia Luo
    Xiaoping Zhang
    Ling Wu
    Ionics, 2016, 22 : 2037 - 2044
  • [30] A novel Cu1.5Mn1.5O4 photothermal catalyst with boosted surface lattice oxygen activation for efficiently photothermal mineralization of toluene
    Qiang Cheng
    Zhuangzhuang Wang
    Xiaotian Wang
    Jiaming Li
    Yuan Li
    Gaoke Zhang
    Nano Research, 2023, 16 (2) : 2133 - 2141