Quasi-perfect codes with small distance

被引:15
|
作者
Etzion, T [1 ]
Mounits, B
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
blockwise direct sum (BDS) construction; covering; density; packing; quasi-perfect codes;
D O I
10.1109/TIT.2005.856944
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main purpose of this paper is to give bounds on the length of the shortest and longest binary quasi-perfect codes with a given Hamming distance, covering radius, and redundancy. We consider codes with Hamming distance 4 and. 5 and covering radius 2 and 3, respectively. We discuss the blockwise direct sum (BDS) construction which has an important role in finding these bounds.
引用
收藏
页码:3938 / 3946
页数:9
相关论文
共 50 条
  • [31] Quasi-Perfect Codes From Cayley Graphs Over Integer Rings
    Queiroz, Catia Quilles
    Camarero, Cristobal
    Martinez, Carmen
    Palazzo, Reginaldo, Jr.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 5905 - 5916
  • [32] A characterization of quasi-perfect equilibria
    Gatti, Nicola
    Gilli, Mario
    Marchesi, Alberto
    GAMES AND ECONOMIC BEHAVIOR, 2020, 122 : 240 - 255
  • [33] Quasi-Perfect Stackelberg Equilibrium
    Marchesi, Alberto
    Farina, Gabriele
    Kroer, Christian
    Gatti, Nicola
    Sandholm, Tuomas
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 2117 - 2124
  • [34] GENERALIZED QUASI-PERFECT NUMBERS
    COHEN, GL
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 27 (01) : 153 - 155
  • [35] On the number of q-ary quasi-perfect codes with covering radius 2
    Alexander M. Romanov
    Designs, Codes and Cryptography, 2022, 90 : 1713 - 1719
  • [36] The Cayley Graphs Associated With Some Quasi-Perfect Lee Codes Are Ramanujan Graphs
    Bibak, Khodakhast
    Kapron, Bruce M.
    Srinivasan, Venkatesh
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6355 - 6358
  • [37] On the number of q-ary quasi-perfect codes with covering radius 2
    Romanov, Alexander M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (08) : 1713 - 1719
  • [38] A sufficient condition for a code to achieve the minimum decoding error probability - Generalization of perfect and quasi-perfect codes
    Hamada, M
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2000, E83A (10) : 1870 - 1877
  • [39] QUASI-PERFECT AGGREGATION AND THE CONVERGENCE APPROACH
    HENOCQ, C
    KEMPF, H
    REVUE ECONOMIQUE, 1984, 35 (05): : 911 - 927
  • [40] Terahertz quasi-perfect vortex beams
    Yang, Yongqiang
    Yang, Zhengang
    Liu, Jinsong
    INFRARED PHYSICS & TECHNOLOGY, 2024, 136