A (p, v)-extension of Srivastava's triple hypergeometric function HB and its properties

被引:0
|
作者
Dar, Showkat Ahmad [1 ,2 ]
Paris, R. B. [3 ]
机构
[1] Jamia Millia Islamia, Fac Engn & Technol, Dept Appl Sci & Humanities, New Delhi 110025, India
[2] Univ Kashmir, Post Grad Dept Math, Govt Degree Coll Boys Baramulla, Kashmir 193101, India
[3] Abertay Univ, Div Comp & Math, Dundee DD1 1HG, Scotland
关键词
Srivastava's triple hypergeometric functions; beta and gamma functions; Exton's triple hypergeometric function; Bessel function; bounded inequality;
D O I
10.1515/anly-2018-0070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain a (p, v)-extension of Srivastava's triple hypergeometric function H-B(center dot), by using the extended beta function B-p,B-v(x, y) introduced in [R. K. Parmar, P. Chopra and R. B. Paris, On an extension of extended beta and hypergeometric functions, J. Class. Anal. 11 (2017), no. 2, 91-106]. We give some of the main properties of this extended function, which include several integral representations involving Exton's hypergeometric function, the Mellin transform, a differential formula, recursion formulas and a bounded inequality.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [21] Recursion formulas for Srivastava’s general triple q-hypergeometric series
    Ashish Verma
    Sarasvati Yadav
    Afrika Matematika, 2020, 31 : 869 - 885
  • [22] Certain Identities Involving the General Kampe de Feriet Function and Srivastava's General Triple Hypergeometric Series
    Qureshi, Mohd Idris
    Choi, Junesang
    Baboo, Mohd Shaid
    SYMMETRY-BASEL, 2022, 14 (12):
  • [23] Class of Integrals Involving Generalized Hypergeometric Function and Srivastava’s Polynomials
    Suthar D.L.
    Purohit S.D.
    Agarwal S.
    International Journal of Applied and Computational Mathematics, 2017, 3 (Suppl 1) : 1197 - 1203
  • [24] Decomposition formulas for Srivastava's hypergeometric function HA on Saran functions
    Turaev, Mamasali
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (03) : 842 - 846
  • [25] INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION H-B
    Choi, Junesang
    Hasanov, Anvar
    Turaev, Mamasali
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2012, 19 (02): : 137 - 145
  • [26] ON A NEW CLASS OF UNIFIED REDUCTION FORMULAS FOR SRIVASTAVA'S GENERAL TRIPLE HYPERGEOMETRIC FUNCTION F(3)[x, y, z]
    Kim, Yong Sup
    Kilicman, Adem
    Rathie, Arjun K.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (01): : 65 - 73
  • [27] A REDUCIBILITY OF SRIVASTAVA'S TRIPLE HYPERGEOMETRIC SERIES F-(3) [x, y, z]
    Choi, Junesang
    Wang, Xiaoxia
    Rathie, Arjun K.
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (02): : 297 - 301
  • [28] SUMMATION FORMULAS DERIVED FROM THE SRIVASTAVA'S TRIPLE HYPERGEOMETRIC SERIES H-C
    Kim, Yong Sup
    Rathie, Arjun Kumar
    Choi, Junesang
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 25 (02): : 185 - 191
  • [29] Relations between Lauricella's triple hypergeometric function FA(3)[x, y, z] and the Srivastava function F(3)[x, y, z]
    Choi, Junesang
    Hasanov, Anvar
    Srivastava, H. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (01) : 69 - 82
  • [30] Bicomplex hypergeometric function and its properties
    Meena, Rekha
    Bhabor, Ajit Kumar
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (06) : 478 - 494