NON-ZERO LYAPUNOV EXPONENTS FOR SOME CONSERVATIVE PARTIALLY HYPERBOLIC SYSTEMS

被引:0
|
作者
Zhou, Yunhua [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
关键词
Lyapunov exponents; partial hyperbolicity; domination; NONUNIFORM HYPERBOLICITY; STABLE ERGODICITY; DIFFEOMORPHISMS;
D O I
10.1090/S0002-9939-2015-12498-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let PH mu 1(M, 3) be the set of C-1 conservative partially hyperbolic diffeomorphisms with center dimensions three or less. We prove that there is a dense subset H subset of PH mu 1(M, 3) such that each f is an element of H has non-zero Lyapunov exponents on a set of positive volume.
引用
收藏
页码:3147 / 3153
页数:7
相关论文
共 50 条
  • [41] On the Non-Zero Divisor Graphs of Some Finite Commutative Rings
    Zai, N. A. F. O.
    Sarmin, N. H.
    Khasraw, S. M. S.
    Gambo, I.
    Zaid, N.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 105 - 112
  • [42] On the Riemann Problem for Non-Conservative Hyperbolic Systems
    STEFANO BIANCHINI
    Archive for Rational Mechanics and Analysis, 2003, 166 : 1 - 26
  • [43] On the Riemann problem for non-conservative hyperbolic systems
    Bianchini, S
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 166 (01) : 1 - 26
  • [44] NUMERICAL STUDY OF CALCULATING LYAPUNOV EXPONENTS FOR NON-SMOOTH SYSTEMS
    Fu, Shihui
    Wang, Qi
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2010, 5 (01): : 65 - 72
  • [45] Lyapunov Exponents, Sensitivity, and Stability for Non-Autonomous Discrete Systems
    Shao, Hua
    Shi, Yuming
    Zhu, Hao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (07):
  • [46] SOME THERMOPOWER MEASUREMENTS ON ALUMINUM AND INDIUM IN ZERO AND NON-ZERO MAGNETIC-FIELDS
    CAPLIN, AD
    CHIANG, CK
    TRACY, J
    SCHROEDER, PA
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1974, 26 (02): : 497 - 506
  • [47] Large deviations for non-zero initial conditions in linear systems
    Polyak, Boris T.
    Smirnov, Georgi
    AUTOMATICA, 2016, 74 : 297 - 307
  • [48] SOME SYSTEMS WITH C1 REGULARITY AND ONLY NEGATIVE LYAPUNOV EXPONENTS
    Qu, Congcong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1600 - 1609
  • [49] REPRESENTING SYSTEMS OF EXPONENTS AND NON-TRIVIAL DECOMPOSITIONS OF ZERO
    KOROBEINIK, IF
    DOKLADY AKADEMII NAUK SSSR, 1980, 252 (03): : 528 - 531
  • [50] Quantifying some distance topological properties of the non-zero component graph
    Alsaadi, Fawaz E.
    Ali, Faisal
    Khalid, Imran
    Rehman, Masood Ur
    Salman, Muhammad
    Alassafi, Madini Obad
    Cao, Jinde
    AIMS MATHEMATICS, 2021, 6 (04): : 3512 - 3524