Back-Propagation Neural Network and ARIMA Algorithm for GDP Trend Analysis

被引:3
|
作者
Hua, Siqi [1 ]
机构
[1] Southwest Univ, Sch Westa, Chongqing 400715, Peoples R China
关键词
D O I
10.1155/2022/1967607
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
GDP (gross domestic product) is a key indicator for assessing a country's or region's macroeconomic situation, as well as a foundation for the government to develop economic development strategies and macroeconomic policies. Currently, the majority of methods for forecasting GDP are linear methods, which only take into account the linear factors that affect GDP. GDP (gross domestic product) is widely regarded as the most accurate indicator of a country's economic health. GDP not only reflects a country's economic development over time but can also reflect its national strength and wealth. As a result, the GDP trend forecast partially reflects China's transformation and future development. The time series ARIMA (Autoregressive Integrated Moving Average) model and the BPNN (BP neural network) model are combined in this article to create the ARIMA-BPNN fusion prediction model. The predicted values of the two models were then weighted averaged to obtain the predicted values of the linear part of the improved fusion model. To get the predicted values of the improved fusion model, we weighted average the residual parts of the two models, predict the nonlinear residual with BPNN, and add the predicted values of the two parts. It is applied to the actual GDP forecast in H province from 2019 to 2022, and the actual forecast verifies the effectiveness of the fusion forecast model in the actual forecast.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] An Improved Back-Propagation Neural Network Algorithm
    Hao, Pan
    [J]. MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 4586 - 4590
  • [2] A Novel Learning Algorithm of Back-propagation Neural Network
    Gong, Bing
    [J]. 2009 IITA INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS ENGINEERING, PROCEEDINGS, 2009, : 411 - 414
  • [3] Hybrid cultural and back-propagation algorithm for neural network training
    Yuan, Xiaohui
    Zhang, Yongchuan
    Wang, Cheng
    Zhou, Jianzhong
    Wang, Jinwen
    Yuan, Yanbin
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 737 - 740
  • [4] A New Back-Propagation Neural Network Optimized with Cuckoo Search Algorithm
    Nawi, Nazri Mohd
    Khan, Abdullah
    Rehman, Mohammad Zubair
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, PT I, 2013, 7971 : 413 - 426
  • [5] A new back-propagation neural network optimized with cuckoo search algorithm
    Nawi, Nazri Mohd
    Khan, Abdullah
    Rehman, Mohammad Zubair
    [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013, 7971 : 413 - 426
  • [6] Based on Privacy Preserving for Back-propagation Neural Network Learning Algorithm
    Wang, Jian
    [J]. ADVANCED MATERIALS AND INFORMATION TECHNOLOGY PROCESSING, PTS 1-3, 2011, 271-273 : 857 - 862
  • [7] Voltage Control Based on a Back-Propagation Artificial Neural Network Algorithm
    Ramirez-Hernandez, Jazmin
    Juarez-Sandoval, Oswaldo-Ulises
    Hernandez-Gonzalez, Leobardo
    Hernandez-Ramirez, Abigail
    Olivares-Dominguez, Raul-Sebastian
    [J]. PROCEEDINGS OF THE XXII 2020 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2020), VOL 4, 2020,
  • [8] NEURAL CONTROLLER BASED ON BACK-PROPAGATION ALGORITHM
    SAERENS, M
    SOQUET, A
    [J]. IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1991, 138 (01) : 55 - 62
  • [9] A fuzzy neural network based on back-propagation
    Jin, Huang
    Quan, Gan
    Linhui, Cai
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 2, PROCEEDINGS, 2007, 4492 : 151 - +
  • [10] Introducing the back-propagation into probabilistic neural network
    [J]. 1600, Systems Engineering Society of China (34):