A lexicon-guided LSI method for semantic news video retrieval

被引:0
|
作者
Cao, Juan [1 ]
Tang, Sheng [1 ]
Li, Jintao [1 ]
Zhang, Yongdong [1 ]
Pan, Xuefeng [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Key lab Intelligent Informat Processing, Beijing 100080, Peoples R China
关键词
ASR text; LSI; semantic video retrieval;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many researchers try to utilize the semantic information extracted from visual feature to directly realize the semantic video retrieval or to supplement the automated speech recognition (ASR) text retrieval. But bridging the gap between the low-level visual feature and semantic content is still a challenging task. In this paper, we study how to effectively use Latent Semantic Indexing (LSI) to improve the semantic video retrieval through the ASR texts. The basic LSI method has been shown effective in the traditional text retrieval and the noisy ASR text retrieval. In this paper, we further use the lexicon-guided semantic clustering to effectively remove the noise introduced by news video's additional contents, and use the cluster-based LSI to automatically mine the semantic structure underlying the terms expression. Tests on the TRECVID 2005 dataset show that the above two enhancements achieve 21.3% and 6.9% improvements in performance over the traditional vector-space model(VSM) and the basic LSI separately.
引用
收藏
页码:187 / 195
页数:9
相关论文
共 50 条
  • [1] Semantic User Modelling for Personal News Video Retrieval
    Hopfgartner, Frank
    Jose, Joemon M.
    [J]. ADVANCES IN MULTIMEDIA MODELING, PROCEEDINGS, 2010, 5916 : 336 - 346
  • [2] News video retrieval by learning multimodal semantic information
    Yu, Hui
    Su, Bolan
    Lu, Hong
    Xue, Xiangyang
    [J]. ADVANCES IN VISUAL INFORMATION SYSTEMS, 2007, 4781 : 403 - 414
  • [3] LDA-based retrieval framework for semantic news video retrieval
    Cao, Juan
    Li, Jintao
    Zhang, Yongdong
    Tang, Sheng
    [J]. ICSC 2007: INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, PROCEEDINGS, 2007, : 155 - +
  • [4] A METHOD FOR MEDICAL VIDEO SEMANTIC RETRIEVAL
    Wu, J.
    Wang, C. Z.
    [J]. BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2017, 121 : 39 - 39
  • [5] Semantic retrieval of video
    Xiong, ZY
    Zhou, XS
    Tian, Q
    Rui, Y
    Huang, TS
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2006, 23 (02) : 18 - 27
  • [6] AutoEncoder Guided Bootstrapping of Semantic Lexicon
    Hu, Chenlong
    Nakano, Mikio
    Okumura, Manabu
    [J]. PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2019, 11672 : 220 - 233
  • [7] The myth of semantic video retrieval
    Dimitrova, N
    [J]. ACM COMPUTING SURVEYS, 1995, 27 (04) : 584 - 586
  • [8] On Semantic Similarity in Video Retrieval
    Wray, Michael
    Doughty, Hazel
    Damen, Dima
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3649 - 3659
  • [9] A Video Captioning Method by Semantic Topic-Guided Generation
    Ye, Ou
    Wei, Xinli
    Yu, Zhenhua
    Fu, Yan
    Yang, Ying
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (01): : 1071 - 1093
  • [10] SgLFT: Semantic-guided Late Fusion Transformer for video corpus moment retrieval
    Chen, Tongbao
    Wang, Wenmin
    Zhao, Minglu
    Li, Ruochen
    Jiang, Zhe
    Yu, Cheng
    [J]. NEUROCOMPUTING, 2024, 599