News video retrieval by learning multimodal semantic information

被引:0
|
作者
Yu, Hui [1 ]
Su, Bolan [1 ]
Lu, Hong [1 ]
Xue, Xiangyang [1 ]
机构
[1] Fudan Univ, Dept Comp Sci & Engn, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
来源
关键词
video retrieval; rich semantic information; TRECVID; manual search task;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the explosion of multimedia data especially that of video data, requirement of efficient video retrieval has becoming more and more important. Years of TREC Video Retrieval Evaluation (TRECVID) research gives benchmark for video search task. The video data in TRECVID are mainly news video. In this paper a compound model consisting of several atom search modules, i.e., textual and visual, for news video retrieval is introduced. First, the analysis on query topics helps to improve the performance of video retrieval. Furthermore, the multimodal fusion of all atom search modules ensures to get good performance. Experimental results on TRECVID 2005 and TRECVID 2006 search tasks demonstrate the effectiveness of the proposed method.
引用
收藏
页码:403 / 414
页数:12
相关论文
共 50 条
  • [1] A survey on multimodal video representation for semantic retrieval
    Calic, J
    Campbell, N
    Dasiopoulou, S
    Kompatsiaris, Y
    EUROCON 2005: THE INTERNATIONAL CONFERENCE ON COMPUTER AS A TOOL, VOL 1 AND 2 , PROCEEDINGS, 2005, : 135 - 138
  • [2] Semantic User Modelling for Personal News Video Retrieval
    Hopfgartner, Frank
    Jose, Joemon M.
    ADVANCES IN MULTIMEDIA MODELING, PROCEEDINGS, 2010, 5916 : 336 - 346
  • [3] LDA-based retrieval framework for semantic news video retrieval
    Cao, Juan
    Li, Jintao
    Zhang, Yongdong
    Tang, Sheng
    ICSC 2007: INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, PROCEEDINGS, 2007, : 155 - +
  • [4] Multimodal Information Fusion for Semantic Video Analysis
    Gulen, Elvan
    Yilmaz, Turgay
    Yazici, Adnan
    INTERNATIONAL JOURNAL OF MULTIMEDIA DATA ENGINEERING & MANAGEMENT, 2012, 3 (04): : 52 - 74
  • [5] Deep Multimodal Learning for Information Retrieval
    Ji, Wei
    Wei, Yinwei
    Zheng, Zhedong
    Fei, Hao
    Chua, Tat-Seng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 9739 - 9741
  • [6] Multimodal Video Annotation for Retrieval and Discovery of Newsworthy Video in a News Verification Scenario
    Nixon, Lyndon
    Apostolidis, Evlampios
    Markatopoulou, Foteini
    Patras, Ioannis
    Mezaris, Vasileios
    MULTIMEDIA MODELING (MMM 2019), PT I, 2019, 11295 : 143 - 155
  • [7] Multimodal Video Indexing and Retrieval Using Directed Information
    Chen, Xu
    Hero, Alfred O., III
    Savarese, Silvio
    IEEE TRANSACTIONS ON MULTIMEDIA, 2012, 14 (01) : 3 - 16
  • [8] Extracting semantic information from news and sport video
    Assfalg, J
    Bertini, M
    Colombo, C
    Del Bimbo, A
    ISPA 2001: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, 2001, : 4 - 11
  • [9] Video summarization by learning semantic information
    Hua R.
    Wu X.
    Zhao W.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (03): : 650 - 657
  • [10] Semantic video fingerprinting and retrieval using face information
    Cotsaces, Costas
    Nikolaidis, Nikos
    Pitas, Ioannis
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2009, 24 (07) : 598 - 613