A new algorithm for comparing and visualizing relationships between hierarchical and flat gene expression data clusterings

被引:15
|
作者
Torrente, A
Kapushesky, M
Brazma, A
机构
[1] EMBL Outstn, European Bioinformat Inst, Cambridge CB10 1SD, England
[2] Univ Carlos III Madrid, Madrid 28911, Spain
关键词
D O I
10.1093/bioinformatics/bti644
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Clustering is one of the most widely used methods in unsupervised gene expression data analysis. The use of different clustering algorithms or different parameters often produces rather different results on the same data. Biological interpretation of multiple clustering results requires understanding how different clusters relate to each other. It is particularly non-trivial to compare the results of a hierarchical and a flat, e. g. k-means, clustering. Results: We present a new method for comparing and visualizing relationships between different clustering results, either flat versus flat, or flat versus hierarchical. When comparing a flat clustering to a hierarchical clustering, the algorithm cuts different branches in the hierarchical tree at different levels to optimize the correspondence between the clusters. The optimization function is based on graph layout aesthetics or on mutual information. The clusters are displayed using a bipartite graph where the edges are weighted proportionally to the number of common elements in the respective clusters and the weighted number of crossings is minimized. The performance of the algorithm is tested using simulated and real gene expression data. The algorithm is implemented in the online gene expression data analysis tool Expression Profiler.
引用
收藏
页码:3993 / 3999
页数:7
相关论文
共 50 条
  • [1] Validating Clusterings of Gene Expression Data
    De Mulder, Wim
    Boel, Rene
    Kuiper, Martin
    [J]. 2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 1, 2010, : 241 - 245
  • [2] Visualizing relationships between data
    Fireman, Jerry
    [J]. Scientific Computing and Instrumentation, 2001, 18 (03): : 34 - 36
  • [3] A New DP Algorithm for Comparing Gene Expression Data Using Geometric Similarity
    Vajdi, Amir
    Haspel, Nurit
    Banaee, Hadi
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 1157 - 1161
  • [4] A New DP Algorithm for Comparing Gene Expression Data Using Geometric Similarity
    Vajdi, Amir
    Haspel, Nurit
    Banaee, Hadi
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 1745 - 1747
  • [5] An optimal hierarchical clustering algorithm for gene expression data
    Seal, S
    Komarina, S
    Aluru, S
    [J]. INFORMATION PROCESSING LETTERS, 2005, 93 (03) : 143 - 147
  • [6] An algorithm to assess the reliability of hierarchical clusters in gene expression data
    Avogadri, Roberto
    Brioschi, Matteo
    Ruffino, Francesca
    Ferrazzi, Fulvia
    Beghini, Alessandro
    Valentini, Giorgio
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 3, PROCEEDINGS, 2008, 5179 : 764 - +
  • [7] ICI: A new approach to explore between-cluster relationships with applications to gene expression data
    Dyson, G.
    Wu, C. F. J.
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2008, 18 (02) : 244 - 255
  • [8] DENCH: A density-based hierarchical clustering algorithm for gene expression data
    Sun Liang
    Zhao Fang
    Wang Yongji
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2007, 16 (01) : 24 - 29
  • [9] Hierarchical clustering of gene expression data
    Luo, F
    Tang, K
    Khan, L
    [J]. THIRD IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING - BIBE 2003, PROCEEDINGS, 2003, : 328 - 335
  • [10] Visualizing Gene Expression Data via Voronoi Treemaps
    Bernhardt, Joerg
    Funke, Stefan
    Hecker, Michael
    Siebourg, Juliane
    [J]. 2009 6TH INTERNATIONAL SYMPOSIUM ON VORONOI DIAGRAMS (ISVD 2009), 2009, : 233 - +