DENCH: A density-based hierarchical clustering algorithm for gene expression data

被引:0
|
作者
Sun Liang [1 ]
Zhao Fang
Wang Yongji
机构
[1] Chinese Acad Sci, Inst Software, Beijing 100080, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Biometr Res Ctr, Hong Kong, Hong Kong, Peoples R China
关键词
gene expression data; cluster analysis; density-based clustering; hierarchical framework; peak point; budding yeast Saccharomyces cerevisiae;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
According to the characteristics of gene expression data, a density-based hierarchical clustering algorithm called DENCH (DENsity-based hierarCHical clustering) is proposed. By defining density for points, DENCH can find arbitrary-shaped clusters and filter noises effectively. Compared with traditional density-based clustering algorithms, DENCH provides both the local view and the global view of the data distribution. Particularly, DENCH arranges the points in a hierarchical framework which overcomes the limit of the global density threshold in traditional density-based clustering algorithms. The basic unit in the hierarchical framework is a set of points rather than one point, which also makes DENCH robust to noises and outliers. DENCH also provides the mechanism to transform the hierarchical structure into directly divided clusters, and clusters with different densities can be extracted in this way. Experimental results show that DENCH outperforms many popular algorithms, including K-means, CAST, and some model-based clustering algorithms.
引用
收藏
页码:24 / 29
页数:6
相关论文
共 50 条
  • [1] DHC: A density-based hierarchical clustering method for time series gene expression data
    Jiang, DX
    Pei, J
    Zhang, AD
    [J]. THIRD IEEE SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING - BIBE 2003, PROCEEDINGS, 2003, : 393 - 400
  • [2] Hierarchical density-based clustering of uncertain data
    Kriegel, HP
    Pfeifle, M
    [J]. Fifth IEEE International Conference on Data Mining, Proceedings, 2005, : 689 - 692
  • [3] Density-based hierarchical clustering for streaming data
    Tu, Q.
    Lu, J. F.
    Yuan, B.
    Tang, J. B.
    Yang, J. Y.
    [J]. PATTERN RECOGNITION LETTERS, 2012, 33 (05) : 641 - 645
  • [4] Novel density-based and hierarchical density-based clustering algorithms for uncertain data
    Zhang, Xianchao
    Liu, Han
    Zhang, Xiaotong
    [J]. NEURAL NETWORKS, 2017, 93 : 240 - 255
  • [5] An Efficient Density-Based Algorithm for Data Clustering
    Theljani, Foued
    Laabidi, Kaouther
    Zidi, Salah
    Ksouri, Moufida
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2017, 26 (04)
  • [6] An Effective Density-Based Hierarchical Clustering Technique to Identify Coherent Patterns from Gene Expression Data
    Sarmah, Sauravjyoti
    Sarmah, Rosy Das
    Bhattacharyya, Dhruba Kumar
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I: 15TH PACIFIC-ASIA CONFERENCE, PAKDD 2011, 2011, 6634 : 225 - 236
  • [7] Hierarchical density-based clustering of categorical data and a simplification
    Andreopoulos, Bill
    An, Aijun
    Wang, Xiaogang
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2007, 4426 : 11 - +
  • [8] HGADC: Hierarchical Genetic Algorithm with Density-Based Clustering for TSP
    Song, Zhenghan
    Li, Yunyi
    Wang, Wenjun
    [J]. BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 1, BIC-TA 2023, 2024, 2061 : 262 - 275
  • [9] A density-based clustering algorithm for the CYGNO data analysis
    Baracchini, E.
    Benussi, L.
    Bianco, S.
    Capoccia, C.
    Caponero, M.
    Cavoto, G.
    Cortez, A.
    Costa, I. A.
    Di Marco, E.
    D'Imperio, G.
    Dho, G.
    Lacoangeli, F.
    Maccarrone, G.
    Marafini, M.
    Mazzitelli, G.
    Messina, A.
    Nobrega, R. A.
    Orlandi, A.
    Paoletti, E.
    Passamonti, L.
    Petrucci, F.
    Piccolo, D.
    Pierluigi, D.
    Pinci, D.
    Renga, F.
    Rosatelli, F.
    Russo, A.
    Saviano, G.
    Tesauroc, R.
    Tomassini, S.
    [J]. JOURNAL OF INSTRUMENTATION, 2020, 15 (12):
  • [10] Hierarchical density-based clustering of shapes
    Gautama, T
    Van Hulle, MM
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING XI, 2001, : 213 - 222